The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A194903 Rectangular array, by antidiagonals: row n gives the positions of n in the fractal sequence A194902; an interspersion. 4
 1, 3, 2, 5, 4, 6, 9, 7, 10, 8, 13, 11, 14, 12, 15, 19, 16, 20, 17, 21, 18, 25, 22, 26, 23, 27, 24, 28, 33, 29, 34, 30, 35, 31, 36, 32, 41, 37, 42, 38, 43, 39, 44, 40, 45, 51, 46, 52, 47, 53, 48, 54, 49, 55, 50, 61, 56, 62, 57, 63, 58, 64, 59, 65, 60, 66, 73, 67, 74 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS See A194832 for a general discussion. LINKS EXAMPLE Northwest corner: 1...3...5...9...13..19 2...4...7...11..16..22 6...10..14..20..26..34 8...12..17..23..30..38 15..21..27..35..43..53 MATHEMATICA r = -Sqrt[12]; t[n_] := Table[FractionalPart[k*r], {k, 1, n}]; f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1,     20}]] (* A194902 *) TableForm[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 15}]] row[n_] := Position[f, n]; u = TableForm[Table[row[n], {n, 1, 20}]] g[n_, k_] := Part[row[n], k]; p = Flatten[Table[g[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A194903 *) q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 80}]]  (* A194904 *) CROSSREFS Cf. A194832, A194902, A194903. Sequence in context: A194870 A302252 A176988 * A194875 A194836 A054069 Adjacent sequences:  A194900 A194901 A194902 * A194904 A194905 A194906 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Sep 05 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 14:24 EDT 2022. Contains 353909 sequences. (Running on oeis4.)