login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A194869 Rectangular array, by antidiagonals: row n gives the positions of n in the fractal sequence A194868; an interspersion. 4
1, 3, 2, 5, 4, 6, 9, 7, 10, 8, 14, 12, 15, 13, 11, 19, 17, 21, 18, 16, 20, 26, 23, 28, 25, 22, 27, 24, 34, 31, 36, 33, 30, 35, 32, 29, 42, 39, 45, 41, 38, 44, 40, 37, 43, 52, 48, 55, 51, 47, 54, 50, 46, 53, 49, 62, 58, 65, 61, 57, 64, 60, 56, 63, 59, 66, 74, 69, 77 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Every pair of rows eventually intersperse.

LINKS

Table of n, a(n) for n=1..69.

EXAMPLE

Northwest corner:

1...3...5...9...14..19

2...4...7...12..17..23

6...10..15..21..28..36

8...13..18..25..33..41

11..16..22..30..38..47

20..27..35..44..54..64

MATHEMATICA

r = -(1 + Sqrt[3])/2;

t[n_] := Table[FractionalPart[k*r], {k, 1, n}];

f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@

Sort[t[n], Less]], {n, 1, 20}]]  (* A194868 *)

TableForm[Table[Flatten[(Position[t[n], #1] &) /@

Sort[t[n], Less]], {n, 1, 15}]]

row[n_] := Position[f, n];

u = TableForm[Table[row[n], {n, 1, 20}]]

g[n_, k_] := Part[row[n], k];

p = Flatten[Table[g[k, n - k + 1], {n, 1, 13},

{k, 1, n}]] (* A194869 *)

q[n_] := Position[p, n]; Flatten[Table[q[n],

{n, 1, 80}]]   (* A194870 *)

CROSSREFS

Cf. A194832, A194868, A194870.

Sequence in context: A194875 A194836 A054069 * A191736 A297208 A301941

Adjacent sequences:  A194866 A194867 A194868 * A194870 A194871 A194872

KEYWORD

nonn,tabl

AUTHOR

Clark Kimberling, Sep 04 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 00:47 EDT 2022. Contains 353959 sequences. (Running on oeis4.)