OFFSET
1,1
COMMENTS
See A194508.
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,1,-1).
FORMULA
From Chai Wah Wu, Jan 21 2020: (Start)
a(n) = a(n-1) + a(n-7) - a(n-8) for n > 8.
G.f.: x*(-2*x^6 + 3*x^5 - 2*x^4 + 3*x^3 - 2*x^2 - 2*x + 3)/(x^8 - x^7 - x + 1). (End)
a(n) = 3*n - 5*floor((4*n + 2)/7). - Ridouane Oudra, Dec 25 2020
EXAMPLE
This table shows (x(n),y(n)) for 1<=n<=13:
n...... 1..2..3..4..5..6..7..8..9..10..11..12..13
x(n)... 3..1.-1..2..0..3..1..4..2..0...3...1...4
y(n).. -1..0..1..0..1..0..1..0..1..2...1...2...1
MATHEMATICA
c = 2; d = 5;
x1 = {3, 1, -1, 2, 0, 3, 1}; y1 = {-1, 0, 1, 0, 1, 0, 1};
x[n_] := If[n <= c + d, x1[[n]], x[n - c - d] + 1]
y[n_] := If[n <= c + d, y1[[n]], y[n - c - d] + 1]
Table[x[n], {n, 1, 100}] (* A194510 *)
Table[y[n], {n, 1, 100}] (* A194511 *)
r[1, n_] := n; r[2, n_] := x[n]; r[3, n_] := y[n]
TableForm[Table[r[m, n], {m, 1, 3}, {n, 1, 30}]]
CROSSREFS
KEYWORD
sign
AUTHOR
Clark Kimberling, Aug 27 2011
STATUS
approved