login
Inverse permutation to A081344.
7

%I #30 Feb 15 2022 12:58:20

%S 1,2,5,3,6,9,13,8,4,7,12,18,25,19,14,10,15,20,26,33,41,32,24,17,11,16,

%T 23,31,40,50,61,51,42,34,27,21,28,35,43,52,62,73,85,72,60,49,39,30,22,

%U 29,38,48,59,71,84,98,113

%N Inverse permutation to A081344.

%C Permutation of the natural numbers.

%C a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.

%C Call a "layer" a pair of sides of square from T(1,n) to T(n,n) and from T(n,n) to T(n,1). This sequence is A188568 as table read layer by layer clockwise.

%C The same table A188568 read by boustrophedon ("ox-plowing") method - layer clockwise, layer counterclockwise and so on - is A064790. - _Boris Putievskiy_, Mar 14 2013

%H Boris Putievskiy, <a href="/A194280/b194280.txt">Rows n = 1..140 of triangle, flattened</a>

%H Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations Integer Sequences And Pairing Functions</a>, arXiv:1212.2732 [math.CO], 2012.

%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>

%F a(n) = (i+j-1)*(i+j-2)/2+j, where

%F i = mod(t;2)*min{t; n - (t - 1)^2} + mod(t + 1; 2)*min{t; t^2 - n + 1}

%F j = mod(t;2)*min{t; t^2 - n + 1} + mod(t + 1; 2)*min{t; n - (t - 1)^2},

%F t = int(math.sqrt(n-1))+1.

%e From _Boris Putievskiy_, Mar 14 2013: (Start)

%e The start of the sequence as table:

%e 1....2...6...7..15..16..28...

%e 3....5...9..12..20..23..35...

%e 4....8..13..18..26..31..43...

%e 10..14..19..25..33..40..52...

%e 11..17..24..32..41..50..62...

%e 21..27..34..42..51..61..73...

%e 22..30..39..49..60..72..85...

%e ...

%e The start of the sequence as triangular array read by rows:

%e 1;

%e 2,5,3;

%e 6,9,13,8,4;

%e 7,12,18,25,19,14,10;

%e 15,20,26,33,41,32,24,17,11;

%e 16,23,31,40,50,61,51,42,34,27,21;

%e 28,35,43,52,62,73,85,72,60,49,39,30,22;

%e ...

%e Row number r contains 2*r-1 numbers. (End)

%o (Python)

%o t=int(math.sqrt(n-1))+1

%o i=(t % 2)*min(t,n-(t-1)**2) + ((t+1) % 2)*min(t,t**2-n+1)

%o j=(t % 2)*min(t,t**2-n+1) + ((t+1) % 2)*min(t,n-(t-1)**2)

%o m=(i+j-1)*(i+j-2)/2+j

%Y Cf. A081344, A064790, A188568.

%K nonn

%O 1,2

%A _Boris Putievskiy_, Dec 23 2012