%I #5 Mar 30 2012 18:57:39
%S 2,5,3,13,7,4,28,17,9,5,58,35,21,11,6,114,70,42,25,13,7,218,134,82,49,
%T 29,15,8,407,251,154,94,56,33,17,9,747,461,284,174,106,63,37,19,10,
%U 1352,835,515,317,194,118,70,41,21,11,2420,1495,923,569,350,214
%N Mirror of the triangle A194009.
%C A194010 is obtained by reversing the rows of the triangle A194009.
%F Write w(n,k) for the triangle at A194009. The triangle at A194010 is then given by w(n,n-k).
%e First six rows:
%e 2
%e 5.....3
%e 13....7....4
%e 28....17...9....5
%e 58....35...21...11...6
%e 114...70...42...25...13...7
%t z = 11;
%t p[n_, x_] := x*p[n - 1, x] + n + 1; p[0, n_] := 1;
%t q[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];
%t p1[n_, k_] := Coefficient[p[n, x], x^k];
%t p1[n_, 0] := p[n, x] /. x -> 0;
%t d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
%t h[n_] := CoefficientList[d[n, x], {x}]
%t TableForm[Table[Reverse[h[n]], {n, 0, z}]]
%t Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A194009 *)
%t TableForm[Table[h[n], {n, 0, z}]]
%t Flatten[Table[h[n], {n, -1, z}]] (* A194010 *)
%Y Cf. A194009.
%K nonn,tabl
%O 0,1
%A _Clark Kimberling_, Aug 11 2011