Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Mar 30 2012 18:57:39
%S 1,1,2,3,6,4,7,14,12,8,15,30,28,24,16,31,62,60,56,48,32,63,126,124,
%T 120,112,96,64,127,254,252,248,240,224,192,128,255,510,508,504,496,
%U 480,448,384,256,511,1022,1020,1016,1008,992,960,896,768,512,1023,2046
%N Mirror of the triangle A193902.
%C A193903 is obtained by reversing the rows of the triangle A193902.
%F Write w(n,k) for the triangle at A193902. The triangle at A193903 is then given by w(n,n-k).
%e First six rows:
%e 1
%e 1....2
%e 3....6....4
%e 7....14...12...8
%e 15...30...28...24...16
%e 31...62...60...56...48...32
%t z = 12;
%t p[n_, x_] := x*p[n - 1, x] + 2^n; p[0, x_] := 1;
%t q[n_, x_] := 2 x*q[n - 1, x] + 1; q[0, x_] := 1;
%t t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
%t w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
%t g[n_] := CoefficientList[w[n, x], {x}]
%t TableForm[Table[Reverse[g[n]], {n, -1, z}]]
%t Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193902 *)
%t TableForm[Table[g[n], {n, -1, z}]]
%t Flatten[Table[g[n], {n, -1, z}]] (* A193903 *)
%Y Cf. A193902.
%K nonn,tabl
%O 0,3
%A _Clark Kimberling_, Aug 08 2011