login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A193824
Mirror of the triangle A193823.
2
1, 1, 1, 3, 3, 1, 9, 9, 5, 1, 27, 27, 19, 7, 1, 81, 81, 65, 33, 9, 1, 243, 243, 211, 131, 51, 11, 1, 729, 729, 665, 473, 233, 73, 13, 1, 2187, 2187, 2059, 1611, 939, 379, 99, 15, 1, 6561, 6561, 6305, 5281, 3489, 1697, 577, 129, 17, 1, 19683, 19683, 19171
OFFSET
0,4
COMMENTS
A193824 is obtained by reversing the rows of the triangle A193823.
FORMULA
Write w(n,k) for the triangle at A193823. The triangle at A193824 is then given by w(n,n-k).
EXAMPLE
First six rows:
1
1....1
3....3....1
9....9....5.....1
27...27...19....7...1
81...81...65....33...9...1
MATHEMATICA
z = 10; a = 2; b = 1;
p[n_, x_] := (a*x + b)^n
q[0, x_] := 1
q[n_, x_] := x*q[n - 1, x] + 1; q[n_, 0] := q[n, x] /. x -> 0;
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193823 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193824 *)
CROSSREFS
Cf. A193823.
Sequence in context: A078033 A221712 A193741 * A108075 A215120 A084145
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 06 2011
STATUS
approved