login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193824
Mirror of the triangle A193823.
2
1, 1, 1, 3, 3, 1, 9, 9, 5, 1, 27, 27, 19, 7, 1, 81, 81, 65, 33, 9, 1, 243, 243, 211, 131, 51, 11, 1, 729, 729, 665, 473, 233, 73, 13, 1, 2187, 2187, 2059, 1611, 939, 379, 99, 15, 1, 6561, 6561, 6305, 5281, 3489, 1697, 577, 129, 17, 1, 19683, 19683, 19171
OFFSET
0,4
COMMENTS
A193824 is obtained by reversing the rows of the triangle A193823.
FORMULA
Write w(n,k) for the triangle at A193823. The triangle at A193824 is then given by w(n,n-k).
EXAMPLE
First six rows:
1
1....1
3....3....1
9....9....5.....1
27...27...19....7...1
81...81...65....33...9...1
MATHEMATICA
z = 10; a = 2; b = 1;
p[n_, x_] := (a*x + b)^n
q[0, x_] := 1
q[n_, x_] := x*q[n - 1, x] + 1; q[n_, 0] := q[n, x] /. x -> 0;
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193823 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193824 *)
CROSSREFS
Cf. A193823.
Sequence in context: A078033 A221712 A193741 * A108075 A215120 A084145
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 06 2011
STATUS
approved