OFFSET
0,2
FORMULA
From Mélika Tebni, Dec 09 2023: (Start)
T(n,k) = binomial(n,k)*(1 + 3^(n-k)) / 2.
E.g.f. of column k: exp(2*x)*cosh(x)*x^k / k!. (End)
From Peter Bala, Mar 07 2024: (Start)
Exponential Riordan array (exp(2*x)*cosh(x), x).
The zeros of the n-th row polynomial R(n,x) = ((1 + x)^n + (3 + x)^n)/2 lie on the vertical line Re(x) = -2 in the complex plane.
EXAMPLE
First five rows:
1
2 1
5 4 1
14 15 6 1
41 56 30 8 1
MATHEMATICA
q[n_, k_] := 1; r[0] = 1;
r[k_] := Sum[q[k - 1, i] r[k - 1 - i], {i, 0, k - 1}]
p[n_, k_] := Coefficient[(1/2) ((x + 3)^n + (x + 1)^n), x, k] (* A193673 *)
v[n_] := Sum[p[n, k] r[n - k], {k, 0, n}]
Table[v[n], {n, 0, 20}] (* A193661 *)
TableForm[Table[q[i, k], {i, 0, 4}, {k, 0, i}]]
Table[r[k], {k, 0, 8}] (* 2^k *)
TableForm[Table[p[n, k], {n, 0, 10}, {k, 0, n}]] (* A193673 as a triangle *)
Flatten[%] (* A193673 as a sequence *)
CROSSREFS
KEYWORD
AUTHOR
Clark Kimberling, Aug 02 2011
STATUS
approved