login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193663
Q-residue of A049310 (triangle of coefficients of Fibonacci polynomials), where Q is the triangle given by t(n,k)=k+1 for 0<=k<=n. (See Comments.)
2
0, 1, 1, 9, 17, 80, 198, 748, 2107, 7236, 21680, 71279, 219879, 708436, 2215513, 7071210, 22256567, 70723367, 223272153, 708017329, 2238347440, 7091170416, 22433032016
OFFSET
0,4
COMMENTS
The definition of Q-residue is given at A193649.
FORMULA
Conjecture: G.f.: x*(1-x+x^2) / ( 1-2*x-6*x^2+7*x^3+x^4 ). - R. J. Mathar, Feb 19 2015
MATHEMATICA
q[n_, k_] := k + 1;
r[0] = 1; r[k_] := Sum[q[k - 1, i] r[k - 1 - i], {i, 0, k - 1}];
f[n_, x_] := Fibonacci[n, x]; (* A049310 *)
p[n_, k_] := Coefficient[f[n, x], x, k];
v[n_] := Sum[p[n, k] r[n - k], {k, 0, n}]
Table[v[n], {n, 0, 22}] (* A193663 *)
TableForm[Table[q[i, k], {i, 0, 4}, {k, 0, i}]]
Table[r[k], {k, 0, 8}]
TableForm[Table[p[n, k], {n, 0, 6}, {k, 0, n}]]
CROSSREFS
Sequence in context: A151793 A118852 A118527 * A166705 A116526 A197396
KEYWORD
nonn
AUTHOR
Clark Kimberling, Aug 02 2011
STATUS
approved