login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193478
G.f. A(x) satisfies: 1/(1-x) = Sum_{n>=0} A(x)^n/sf(n), where A(x) = Sum_{n>=1} a(n)*x^n/sf(n), and sf(n) = Product_{k=0..n} k! is the superfactorial of n (A000178).
1
1, 1, 5, 95, 9959, 6270119, 28519938719, 1045680030158399, 349874346597600908159, 1178635679994967168072291199, 44013684086180240167822552866892799, 19826711369458419136710617483545735797772799, 116690731684609551482643899854886684445978037938815999
OFFSET
1,3
EXAMPLE
A(x) = x + x^2/(1!*2!) + 5*x^3/(1!*2!*3!) + 95*x^4/(1!*2!*3!*4!) + 9959*x^5/ (1!*2!*3!*4!*5!) + 6270119*x^6/(1!*2!*3!*4!*5!*6!) +...+ a(n)*x^n/sf(n) +...
where
1/(1-x) = 1 + A(x) + A(x)^2/(1!*2!) + A(x)^3/(1!*2!*3!) + A(x)^4/(1!*2!*3!*4!) + A(x)^5/(1!*2!*3!*4!*5!) + A(x)^6/(1!*2!*3!*4!*5!*6!) +...+ A(x)^n/sf(n) +...
and sf(n) = 0!*1!*2!*3!*...*(n-1)!*n!.
PROG
(PARI) {a(n)=local(A=sum(m=1, n-1, a(m)*x^m/prod(k=0, m, k!))+O(x^(n+2)));
prod(k=0, n, k!)*polcoeff(1/(1-x)-sum(m=0, n, A^m/prod(k=0, m, k!)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 27 2011
STATUS
approved