login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193395
Wiener index of a benzenoid consisting of a double-step zig-zag chain of n hexagons (n >= 2, s = 2123; see the Gutman et al. reference).
6
109, 271, 553, 971, 1573, 2375, 3425, 4739, 6365, 8319, 10649, 13371, 16533, 20151, 24273, 28915, 34125, 39919, 46345, 53419, 61189, 69671, 78913, 88931, 99773, 111455, 124025, 137499, 151925, 167319, 183729, 201171, 219693, 239311, 260073, 281995, 305125, 329479, 355105
OFFSET
2,1
LINKS
A. A. Dobrynin, I. Gutman, S. Klavzar, and P. Zigert, Wiener Index of Hexagonal Systems, Acta Applicandae Mathematicae 72 (2002), pp. 247-294.
I. Gutman, S. Klavzar, M. Petkovsek, and P. Zigert, On Hosoya polynomials of benzenoid graphs, Comm. Math. Comp. Chem. (MATCH), 43, 2001, 49-66.
FORMULA
a(n) = (16*n^3 + 24*n^2 + 74*n +6*(-1)^n - 51)/3.
G.f.: x^2*(109 - 56*x - 42*x^2 + 72*x^3 - 19*x^4)/((1+x)*(1-x)^4). - Bruno Berselli, Jul 27 2011
MAPLE
a := proc (n) options operator, arrow; (16/3)*n^3+8*n^2+(74/3)*n+2*(-1)^n-17 end proc: seq(a(n), n = 2 .. 40);
MATHEMATICA
Table[(16n^3+24n^2+74n+6(-1)^n-51)/3, {n, 2, 40}] (* or *) LinearRecurrence[ {3, -2, -2, 3, -1}, {109, 271, 553, 971, 1573}, 40] (* Harvey P. Dale, Apr 08 2020 *)
PROG
(Magma) [(16*n^3 + 24*n^2 + 74*n +6*(-1)^n - 51)/3: n in [2..40]]; // Vincenzo Librandi, Jul 26 2011
(PARI) a(n)=(16*n^3+24*n^2+74*n+6*(-1)^n)/3-17 \\ Charles R Greathouse IV, Jul 28 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Jul 25 2011
STATUS
approved