login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193049
Coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) defined at Comments.
1
0, 1, 1, 2, 4, 12, 37, 105, 268, 625, 1355, 2772, 5414, 10188, 18605, 33161, 57954, 99683, 169265, 284452, 474066, 784852, 1292567, 2119923, 3465620, 5651323, 9197673, 14947276, 24263704, 39353486, 63787101, 103341963, 167366400, 270986619
OFFSET
0,4
COMMENTS
The titular polynomials are defined recursively: p(n,x)=x*p(n-1,x)+n(4-5*n^2+n^4)/120, with p(0,x)=1. For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232 and A192744.
FORMULA
a(n)=7*a(n-1)-20*a(n-2)+29*a(n-3)-20*a(n-4)+*a(n-5)+8*a(n-6)-5*a(n-7)+a(n-8).
G.f.: -x*(x^2-x+1)*(x^4-5*x^3+9*x^2-5*x+1) / ( (x^2+x-1)*(x-1)^6 ). - R. J. Mathar, May 12 2014
MATHEMATICA
(See A193048.)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jul 15 2011
STATUS
approved