login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192637
G.f. A(x) satisfies: A(x) = exp( Sum_{n>=1} B(x^n)/n ) where B(x) = Series_Reversion(x/A(x)) = g.f. of A179325.
1
1, 1, 2, 5, 18, 80, 430, 2590, 17140, 121992, 923641, 7375525, 61742602, 539333870, 4898377418, 46123950289, 449236837762, 4517200710720, 46817951543477, 499470969336575, 5478324090579153, 61712245317522148, 713306845141673578, 8452729850796180097, 102612120337242520914
OFFSET
0,3
FORMULA
G.f.: A(x) = 1/Product_{n>=1} (1 - x^n)^A179325(n); i.e., this sequence equals the Euler transform of A179325.
Given g.f. A(x), let B(x) be the g.f. of A179325, then A(x) and B(x) satisfy:
_ B(x) = x*A(B(x)) = Series_Reversion(x/A(x)),
_ B(x) = x*exp( Sum_{n>=1} B(B(x)^n)/n ).
G.f. satisfies: A(x) = exp( Sum_{n>=1} Sum_{k>=1} x^(n*k)/(n*k) * {[y^(k-1)] A(y)^k} ), where [y^(k-1)] A(y)^k denotes the coefficient of y^(k-1) in A(y)^k. - Paul D. Hanna, Feb 13 2013
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 18*x^4 + 80*x^5 + 430*x^6 +...
which satisfies:
log(A(x)) = B(x) + B(x^2)/2 + B(x^3)/3 + B(x^4)/4 +...
where B(x) = x*A(B(x)) = g.f. of A179325 begins:
B(x) = x + x^2 + 3*x^3 + 12*x^4 + 59*x^5 + 331*x^6 + 2062*x^7 +...
PROG
(PARI) a(n)=local(A=1+x, B=x); for(i=1, n, B=serreverse(x/(A+x*O(x^n))); A=exp(sum(m=1, n, subst(B, x, x^m+x*O(x^n))/m))); polcoeff(A, n)
(PARI) /* As the Euler transform of A179325: */
{a(n)=local(A=1+x, B=x); for(i=1, n, B=serreverse(x/(A+x*O(x^n))); A=1/prod(k=1, n, (1-x^k+x*O(x^n))^polcoeff(B, k))); polcoeff(A, n)}
(PARI) a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(k=1, n, x^(m*k)/(m*k)*polcoeff(A^k+O(x^k), k-1)) +x*O(x^n)))); polcoeff(A, n)
for(n=0, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Feb 13 2013
CROSSREFS
Cf. A179325.
Sequence in context: A206293 A137861 A286282 * A111916 A328440 A308634
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 06 2011
STATUS
approved