|
|
A192636
|
|
Powerful sums of two powerful numbers.
|
|
1
|
|
|
8, 9, 16, 25, 32, 36, 64, 72, 81, 100, 108, 121, 125, 128, 144, 169, 196, 200, 216, 225, 243, 256, 288, 289, 324, 343, 361, 392, 400, 432, 441, 484, 500, 512, 576, 625, 648, 675, 676, 729, 784, 800, 841, 864, 900, 961, 968, 972, 1000, 1024, 1089, 1125, 1152, 1156, 1225
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Browning & Valckenborgh conjecture that a(n) ~ kn^2 with k approximately 0.139485255. See their Conjecture 1 and equation (14). Their Theorems 1 and 2 establish upper and lower asymptotic bounds.
|
|
LINKS
|
Charles R Greathouse IV, Table of n, a(n) for n = 1..5000
T. D. Browning and K. Van Valckenborgh, Sums of three squareful numbers (2011).
|
|
FORMULA
|
Numbers k such that there exists some a, b, c with A001694(a) + A001694(b) = k = A001694(c).
|
|
PROG
|
(PARI) isPowerful(n)=if(n>3, vecmin(factor(n)[, 2])>1, n==1)
sumset(a, b)={
my(c=vectorsmall(#a*#b));
for(i=1, #a,
for(j=1, #b,
c[(i-1)*#b+j]=a[i]+b[j]
)
);
vecsort(c, , 8)
}; selfsum(a)={
my(c=vectorsmall(binomial(#a+1, 2)), k);
for(i=1, #a,
for(j=i, #a,
c[k++]=a[i]+a[j]
)
);
vecsort(c, , 8)
};
list(lim)={
my(v=select(isPowerful, vector(floor(lim), i, i)));
select(n->n<=lim && isPowerful(n), Vec(selfsum(v)))
};
|
|
CROSSREFS
|
Subsequence of A001694 and of A076871.
Cf. A001694, A007532, A005934, A005188, A003321, A014576, A023052, A046074, A013929, A076871, A143813. - Jonathan Vos Post, Jul 10 2011
Sequence in context: A351098 A227649 A227648 * A265731 A227646 A331701
Adjacent sequences: A192633 A192634 A192635 * A192637 A192638 A192639
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Charles R Greathouse IV, Jul 06 2011
|
|
EXTENSIONS
|
Corrected (on the advice of Donovan Johnson) by Charles R Greathouse IV, Sep 25 2012
|
|
STATUS
|
approved
|
|
|
|