login
A192335
Numbers n such that phi(n) divides rad(n).
0
1, 2, 4, 6, 18
OFFSET
1,2
COMMENTS
Terms are all of the form n = 2^a * 3^b with a <= 2 (else 4 | rad(n)) and b <= 2 (else 9 | rad(n)), hence the sequence is finite. [Charles R Greathouse IV, Jun 29 2011]
MATHEMATICA
Rad[n_] := Times @@ Transpose[FactorInteger[n]][[1]]; Select[Range[10^6], Mod[Rad[#], EulerPhi[#]] == 0 &]
PROG
(PARI) rad(n)=n=factor(n)[, 1]; prod(i=1, #n, n[i])
for(n=1, 2^2*3^2, if(rad(n)%eulerphi(n)==0, print1(n", "))) \\ Charles R Greathouse IV, Jun 29 2011
CROSSREFS
Sequence in context: A367127 A294920 A046441 * A334390 A067993 A074131
KEYWORD
nonn,fini,full
AUTHOR
STATUS
approved