OFFSET
1,2
COMMENTS
The topological entropy of a continuous map from a compact metric space into itself is a quantitative measure of the complexity of the dynamical system defined by the iteration of the map. See Adler, Konheim, McAndrew reference.
LINKS
Klaus Brockhaus, Table of n, a(n) for n = 1..10000
R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319.
E. Barrabés, D. Juher, The minimum tree for a given zero entropy period, Int. J. Math. Math. Sci. 2005:19 (2005), pp. 3025-3033.
FORMULA
a(n) = n - Sum_{i=2..k} Product_{j=i..k} s_j, where n = s_1*s_2*...*s_k with s_i primes and s_i <= s_{i+1}.
EXAMPLE
a(2^n)=2 for n > 0, a(p)=p for p prime, a(k*2^j) = a(k) for k > 0, j >= 0.
PROG
(Magma) A192330:=func< n | n-s where s:=w eq [] select 0 else &+w where w:=[ &*[ v[i]: i in [k..#v] ]: k in [2..#v] ] where v:=&cat[ [ f[j, 1]: i in [1..f[j, 2]] ]: j in [1..#f] ] where f:=Factorization(n) >; [ A192330(n): n in [1..75] ]; // Klaus Brockhaus, Jul 02 2011
(PARI) A192330(n)=
{local(f=factor(n), v=[], k, s); for(j=1, #f[, 2], for(i=1, f[j, 2], v=concat(v, f[j, 1]))); k=#v; s=sum(i=2, k, prod(j=i, k, v[j])); n-s}
vector(75, n, A192330(n)) \\ Klaus Brockhaus, Jul 02 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
David Juher, Jun 28 2011
STATUS
approved