login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192072
G.f. S(x) satisfies: C(C(x)) + S(S(x)) = x such that C(x)^3 + (3/2)*S(x)^3 = x^3.
2
0, 6, 0, 0, 648, 0, 0, 793152, 0, 0, 1262231424, 0, 0, 2646377775360, 0, 0, 6519085424584704, 0, 0, 18278010233307389952, 0, 0, 56939392133946726580224, 0, 0, 194204339279813558544629760, 0, 0, 717807985600217602759000326144, 0, 0, 2853876809466218301455118709555200, 0, 0
OFFSET
1,2
FORMULA
Functions C(x) and S(x) satisfy:
(1) C'(C(x)) *C'(x) + S'(S(x)) *S'(x) = 1,
(2) C(x)^2 *C'(x) + (3/2)*S(x)^2 *S'(x) = x^2.
EXAMPLE
G.f.: S(x) = 6*x^2 + 648*x^5 + 793152*x^8 + 1262231424*x^11 + 2646377775360*x^14 + 6519085424584704*x^17 +...
Related expansions:
C(x) = x - 108*x^4 - 46656*x^7 - 56267136*x^10 - 91334158848*x^13 - 187875634540032*x^16 -...
C(C(x)) = x - 216*x^4 - 46656*x^7 - 64665216*x^10 - 99769190400*x^13 - 209379250944000*x^16 -...
S(S(x)) = 216*x^4 + 46656*x^7 + 64665216*x^10 + 99769190400*x^13 + 209379250944000*x^16 +...
C(x)^3 = x^3 - 324*x^6 - 104976*x^9 - 139828032*x^12 - 232643612160*x^15 - 491365348803072*x^18 -...
S(x)^3 = 216*x^6 + 69984*x^9 + 93218688*x^12 + 155095741440*x^15 + 327576899202048*x^18 +...
PROG
(PARI) {a(n)=local(C=x, S=6*x^2, Cv=[1, 0, 0, -108]);
for(i=0, n\3, Cv=concat(Cv, [0, 0, 0]); C=x*Ser(Cv); S=((x^3-C^3)*2/3)^(1/3);
Cv[#Cv]=-polcoeff((subst(C, x, C)+subst(S, x, S))*3/2, #Cv); ); polcoeff(S, n)}
CROSSREFS
Cf. A192071 (C(x)), A192073 (C(C(x))); variants: A192058, A191418.
Sequence in context: A353224 A293526 A293568 * A060297 A240315 A339431
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 22 2011
STATUS
approved