login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191891
Ordered sums 4*f+5*g, where f and g are positive Fibonacci numbers (A000045).
4
9, 13, 14, 17, 18, 19, 22, 23, 25, 27, 29, 30, 33, 35, 37, 42, 44, 45, 47, 48, 52, 57, 60, 62, 67, 69, 72, 73, 77, 85, 89, 92, 94, 97, 99, 109, 113, 117, 124, 125, 137, 141, 146, 149, 151, 157, 161, 174, 176, 178, 182, 189, 190, 201, 202, 222, 225, 230, 235
OFFSET
1,1
LINKS
MAPLE
F:= [seq(combinat:-fibonacci(n), n=2..20)]:
N:= 4*F[-1]+5:
sort(select(`<=`, convert({seq(seq(4*f+5*g, g=F), f=F)}, list), N)); # Robert Israel, Apr 06 2017
MATHEMATICA
c = 4; d = 5; f[n_] := Fibonacci[n];
g[n_] := c*f[n]; h[n_] := d*f[n];
t[i_, j_] := h[i] + g[j];
u = Table[t[i, j], {i, 1, 20}, {j, 1, 20}];
v = Union[Flatten[u ]] (* A191891 *)
t1[i_, j_] := If[g[i] - h[j] > 0, g[i] - h[j], 0]
u1 = Table[t1[i, j], {i, 1, 20}, {j, 1, 20}];
v1 = Union[Flatten[u1 ]] (* A191892: c*f(i)-d*f(j) *)
g1[n_] := d*f[n]; h1[n_] := c*f[n];
t2[i_, j_] := If[g1[i] - h1[j] > 0, g1[i] - h1[j], 0]
u2 = Table[t2[i, j], {i, 1, 20}, {j, 1, 20}];
v2 = Union[Flatten[u2 ]] (* A191893: d*f(i)-c*f(j) *)
v3 = Union[v1, v2] (* A191894*)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jun 18 2011
EXTENSIONS
Name improved by Robert Israel, Apr 06 2017
STATUS
approved