login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A191855 Second factor in happy factorization of n-th rectangular number. 7
2, 5, 3, 10, 4, 13, 2, 17, 9, 5, 7, 11, 26, 4, 29, 6, 3, 2, 37, 19, 13, 41, 7, 4, 9, 2, 50, 13, 53, 27, 5, 8, 19, 58, 4, 61, 2, 65, 33, 17, 3, 14, 9, 73, 74, 4, 11, 3, 82, 28, 85, 43, 89, 10, 4, 31, 2, 5, 97, 2, 101, 51, 21, 106, 4, 109, 11, 37, 16, 113, 57 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(n) > 1;

a(n) = A007967(A007969(n)) = A007969(n) / A191854(n);

(A191854(n), a(n)) is a 1-happy couple;

notation: C in the Conway link.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..200

J. H. Conway, On Happy Factorizations, J. Integer Sequences, Vol. 1, 1998, #1.

MATHEMATICA

r[b_, c_] := (red = Reduce[x > 0 && y > 0 && b*x^2 + 1 == c*y^2, {x, y}, Integers] /. C[1] -> 1 // Simplify; If[Head[red] === Or, First[red], red]); f[128] = {}(* to speed up *); f[n_] := f[n] = If[IntegerQ[Sqrt[n]], {}, Do[c = n/b; If[(r0 = r[b, c]) =!= False, {x0, y0} = {x, y} /. ToRules[r0]; Return[{b, c, x0, y0}]], {b, Divisors[n] // Most}]]; A191855 = Reap[Table[Print[n, " ", f[n]];    If[f[n] != {} && f[n] =!= Null, Sow[f[n][[2]]]], {n, 1, 130}]][[2, 1]] (* Jean-Fran├žois Alcover, Sep 18 2015 *)

PROG

(Haskell)

a191855 = a007967 . a007969  -- Reinhard Zumkeller, Oct 11 2015

CROSSREFS

Cf. A007967, A007969, A191854.

Sequence in context: A057337 A163233 A096666 * A064664 A323637 A078386

Adjacent sequences:  A191852 A191853 A191854 * A191856 A191857 A191858

KEYWORD

nonn

AUTHOR

Reinhard Zumkeller, Jun 18 2011

EXTENSIONS

Wrong formula removed (thanks to Wolfdieter Lang, who pointed this out) by Reinhard Zumkeller, Oct 11 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 25 16:45 EDT 2020. Contains 337344 sequences. (Running on oeis4.)