login
A191846
Ordered sums 2*f+3*g, where f and g are Fibonacci numbers (A000045).
4
5, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 19, 21, 22, 25, 26, 28, 29, 30, 31, 32, 34, 35, 40, 41, 43, 45, 48, 49, 50, 51, 55, 57, 65, 66, 67, 69, 71, 73, 74, 77, 79, 81, 83, 89, 92, 104, 105, 106, 107, 108, 112, 113, 116, 118, 119, 125, 128, 131, 134, 144, 149
OFFSET
1,1
MATHEMATICA
c = 2; d = 3; f[n_] := Fibonacci[n];
g[n_] := c*f[n]; h[n_] := d*f[n];
t[i_, j_] := h[i] + g[j];
u = Table[t[i, j], {i, 1, 20}, {j, 1, 20}];
v = Union[Flatten[u ]] (* A191846 *)
t1[i_, j_] := If[g[i] - h[j] > 0, g[i] - h[j], 0]
u1 = Table[t1[i, j], {i, 1, 20}, {j, 1, 20}];
v1 = Union[Flatten[u1 ]] (* A191847: 2f(i)-3*f(j) *)
g1[n_] := d*f[n]; h1[n_] := c*f[n];
t2[i_, j_] := If[g1[i] - h1[j] > 0, g1[i] - h1[j], 0]
u2 = Table[t2[i, j], {i, 1, 20}, {j, 1, 20}];
v2 = Union[Flatten[u2 ]] (* A191848: 3*f(i)-2(f(j) *)
v3 = Union[v1, v2] (* A191849 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jun 17 2011
STATUS
approved