The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A191743 Smallest numbers with a given factorization pattern in their sequence of divisors. 6
 1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 30, 32, 36, 40, 42, 48, 54, 60, 64, 72, 80, 84, 88, 90, 96, 100, 108, 120, 126, 128, 140, 144, 150, 156, 160, 162, 168, 176, 180, 192, 198, 200, 210, 216, 220, 240, 252, 256, 264, 270, 272, 280, 288, 294, 300, 312, 315, 320, 324, 330 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS To get the factorization pattern of the divisors of n, take the list of divisors of n, and factor each one, using p,q,r,... to represent the prime divisors of n in order. E.g., when factoring 14 as a divisor of 84, the prime divisors of 84 are p=2, q=3, r=7, so 14 => p*r. LINKS Giovanni Resta, Table of n, a(n) for n = 1..10000 EXAMPLE The factors of any prime p are 1,p, so this is the factorization pattern for all primes. The first prime, 2, is thus in the sequence, and no other primes are. Semiprimes have either the pattern 1,p,p^2 or 1,p,q,p*q, so the semiprimes in this sequence are the first instances of each of these, respectively 4 and 6. For numbers which are the product of the square of a prime and a different prime (A054753), there are three possible patterns: 1,p,q,p^2,p*q,p^2*q, 1,p,q,p*q,q^2,p*q^2, and 1,p,p^2,q,p*q,p*q^2; the exemplars in the sequence are 12, 18, and 20 respectively. MATHEMATICA f[n_] := If[n==1, 1, Block[{p = First /@ FactorInteger@n, z}, z = Table[p[[i]] -> x[i], {i, Length@p}]; Times @@ (((#[] /. z)^#[]) & /@ FactorInteger[#]) & /@ Divisors[n]]]; A = <||>; L={}; Do[k = f[n]; If[! KeyExistsQ[A, k], AppendTo[L, n]; A[k] = 1], {n, 330}]; L (* Giovanni Resta, Jul 20 2017 *) PROG (PARI) vecfnd(v, x)={ for(k=1, #v, if(v[k]==x, return(k))); return(0); } vecfndn(v, x, n)={ for(k=1, n, if(v[k]==x, return(k))); return(0); } factfmt(k, ps)= { local(r, fm); r=""; fm=factor(k); for(i=1, matsize(fm), if(i>1, r=Str(r"*")); r=Str(r, vecfnd(ps, fm[i, 1])); if(fm[i, 2]>1, r=Str(r"^"fm[i, 2])) ); return(r); } /* end factfmt() */ factpatt(n)= { local(ps, ds, r); r=""; ps=factor(n)[, 1]~; ds=divisors(n); for(k=1, #ds, if(k>1, r=Str(r", ")); r=concat(r, factfmt(ds[k], ps))); return(r); } /* end factpatt() */ al(n)= { local(k, r, st, m, pt); k=1; r=vector(n); st=vector(n); while(m

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 30 15:38 EST 2023. Contains 359945 sequences. (Running on oeis4.)