login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191720
Expansion of e.g.f. arctan(exp(x)-1).
1
1, 1, -1, -11, -25, 181, 2039, 3109, -131545, -1417259, 2734679, 239834629, 2217084935, -23659572299, -859070164681, -5378041927451, 198832696957415, 5164126517703061, 4868884057959959, -2309488856960067131
OFFSET
1,4
LINKS
Eric Weisstein's MathWorld, Polylogarithm.
FORMULA
a(n) = sum(m=1..(n+1)/2, ((-1)^(m-1)*(2*m-2)!*stirling2(n,2*m-1))).
a(n) ~ (n-1)! * 2^(2*n) * sin(n*arctan(Pi/log(4))) / (Pi^2+4*log(2)^2)^(n/2). - Vaclav Kotesovec, Jan 02 2014
a(n) = (-1)^(n+1)*Im(Li_{1-n}(1+i)), where Li_n(x) is the polylogarithm, i=sqrt(-1). - Vladimir Reshetnikov, Oct 31 2015
MAPLE
a:=series(arctan(exp(x)-1), x=0, 21): seq(n!*coeff(a, x, n), n=0..20); # Paolo P. Lava, Mar 27 2019
MATHEMATICA
nn=20; Rest[CoefficientList[Series[ArcTan[Exp[x]-1], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Jul 22 2011 *)
Table[(-1)^(n+1) Im[PolyLog[1-n, 1+I]], {n, 1, 20}] (* Vladimir Reshetnikov, Oct 31 2015 *)
PROG
(Maxima)
a(n):=sum(((-1)^(m-1)*(2*m-2)!*stirling2(n, 2*m-1)), m, 1, (n+1)/2);
CROSSREFS
Sequence in context: A043160 A043940 A220434 * A066956 A250611 A137015
KEYWORD
sign
AUTHOR
Vladimir Kruchinin, Jun 13 2011
STATUS
approved