login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191587
Smallest prime p such that p-n is the product of exactly n distinct primes.
2
3, 17, 73, 1789, 6011, 1616621, 2114977, 111546443, 2156564419, 742073813491, 784009188701, 3093211012526647, 1240404920534023, 3206211009211419509, 171718219950879367781, 993969333554296364281, 6899316550553351234327, 108706781456610360939660763, 29365306848773629524600829, 376147205196163170923414109869
OFFSET
1,1
EXAMPLE
a(4) = 1789 because 1789 - 4 = 1785 = 3 * 5 * 7 * 17.
MAPLE
A191587 := proc(n) for i from 1 do p := ithprime(i) ; if A001221(p-n) = n then return p ; end if; end do: end proc: # R. J. Mathar, Jul 01 2011
MATHEMATICA
Table[k := 2; While[Not[Length[FactorInteger[Prime[k] - n]] == n], k++ ]; Prime[k], {n, 1, 8}]
PROG
(PARI) A191587List(m) = local(j=1, p); for(n=1, m, p=prime(j); while(omega(p-n)!=n, p=prime(j++)); print1(p, ", "));
default(primelimit, 2200000); A191587List(7); \\ Klaus Brockhaus, Jun 21 2011
(Haskell)
a191587 n = head [p | p <- dropWhile (<= n) a000040_list,
a001221 (p - n) == n]
-- Reinhard Zumkeller, Jun 24 2015
CROSSREFS
Cf. A097977.
Sequence in context: A342365 A179596 A339647 * A290411 A142868 A171875
KEYWORD
nonn,hard
AUTHOR
Michel Lagneau, Jun 07 2011
EXTENSIONS
a(10)-a(16) from Donovan Johnson, Jan 14 2012
a(17)-a(20) from Robert Israel, Mar 27 2020
STATUS
approved