Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Mar 29 2017 20:25:21
%S 0,1,2,5,10,21,40,79,148,287,538,1041,1964,3811,7242,14105,26974,
%T 52713,101332,198571,383326,752837,1458268,2869131,5573286,10981597,
%U 21382196,42183395,82299994,162533193,317650712,627885751,1228966140,2431126919,4764733138,9431945577
%N Sum of lengths of initial and final horizontal segments over all dispersed Dyck paths of semilength n (i.e., over all Motzkin paths of length n with no (1,0)-steps at positive heights).
%H G. C. Greubel, <a href="/A191531/b191531.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) = Sum_{k>=0} k*A191530(n,k).
%F G.f.: z*(3-2*z-sqrt(1-4*z^2))/((1-z)^2*(1-2*z+sqrt(1-4*z^2))).
%F a(n) ~ 2^(n+3/2)/sqrt(Pi*n). - _Vaclav Kotesovec_, Mar 21 2014
%F Conjecture: +n*(n-3)*a(n) -2*(n^2-2*n-2)*a(n-1) -(3*n^2-21*n+32)*a(n-2) +2*(n-2)*(4*n-13)*a(n-3) -4*(n-2)*(n-3)*a(n-4)=0. - _R. J. Mathar_, Jun 14 2016
%e a(4)=10 because in HHHH, HHUD, HUDH, UDHH, UDUD, UUDD we have 4+2+2+2+0+0=10.
%p g := z*(3-2*z-sqrt(1-4*z^2))/((1-z)^2*(1-2*z+sqrt(1-4*z^2))): gser := series(g, z = 0, 40): seq(coeff(gser, z, n), n = 0 .. 35);
%t CoefficientList[Series[x (3-2x-Sqrt[1-4x^2])/((1-x)^2 (1-2x+ Sqrt[1-4x^2])) ,{x,0,40}],x] (* _Harvey P. Dale_, Jun 19 2011 *)
%o (PARI) z='z+O('z^50); concat([0], Vec(z*(3-2*z-sqrt(1-4*z^2))/((1-z)^2*(1-2*z+sqrt(1-4*z^2))))) \\ _G. C. Greubel_, Mar 27 2017
%Y Cf. A191530.
%K nonn
%O 0,3
%A _Emeric Deutsch_, Jun 07 2011