login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191531
Sum of lengths of initial and final horizontal segments over all dispersed Dyck paths of semilength n (i.e., over all Motzkin paths of length n with no (1,0)-steps at positive heights).
2
0, 1, 2, 5, 10, 21, 40, 79, 148, 287, 538, 1041, 1964, 3811, 7242, 14105, 26974, 52713, 101332, 198571, 383326, 752837, 1458268, 2869131, 5573286, 10981597, 21382196, 42183395, 82299994, 162533193, 317650712, 627885751, 1228966140, 2431126919, 4764733138, 9431945577
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k>=0} k*A191530(n,k).
G.f.: z*(3-2*z-sqrt(1-4*z^2))/((1-z)^2*(1-2*z+sqrt(1-4*z^2))).
a(n) ~ 2^(n+3/2)/sqrt(Pi*n). - Vaclav Kotesovec, Mar 21 2014
Conjecture: +n*(n-3)*a(n) -2*(n^2-2*n-2)*a(n-1) -(3*n^2-21*n+32)*a(n-2) +2*(n-2)*(4*n-13)*a(n-3) -4*(n-2)*(n-3)*a(n-4)=0. - R. J. Mathar, Jun 14 2016
EXAMPLE
a(4)=10 because in HHHH, HHUD, HUDH, UDHH, UDUD, UUDD we have 4+2+2+2+0+0=10.
MAPLE
g := z*(3-2*z-sqrt(1-4*z^2))/((1-z)^2*(1-2*z+sqrt(1-4*z^2))): gser := series(g, z = 0, 40): seq(coeff(gser, z, n), n = 0 .. 35);
MATHEMATICA
CoefficientList[Series[x (3-2x-Sqrt[1-4x^2])/((1-x)^2 (1-2x+ Sqrt[1-4x^2])) , {x, 0, 40}], x] (* Harvey P. Dale, Jun 19 2011 *)
PROG
(PARI) z='z+O('z^50); concat([0], Vec(z*(3-2*z-sqrt(1-4*z^2))/((1-z)^2*(1-2*z+sqrt(1-4*z^2))))) \\ G. C. Greubel, Mar 27 2017
CROSSREFS
Cf. A191530.
Sequence in context: A182807 A306098 A056599 * A212531 A261681 A333798
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jun 07 2011
STATUS
approved