OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = Sum_{k>=0} k*A191530(n,k).
G.f.: z*(3-2*z-sqrt(1-4*z^2))/((1-z)^2*(1-2*z+sqrt(1-4*z^2))).
a(n) ~ 2^(n+3/2)/sqrt(Pi*n). - Vaclav Kotesovec, Mar 21 2014
Conjecture: +n*(n-3)*a(n) -2*(n^2-2*n-2)*a(n-1) -(3*n^2-21*n+32)*a(n-2) +2*(n-2)*(4*n-13)*a(n-3) -4*(n-2)*(n-3)*a(n-4)=0. - R. J. Mathar, Jun 14 2016
EXAMPLE
a(4)=10 because in HHHH, HHUD, HUDH, UDHH, UDUD, UUDD we have 4+2+2+2+0+0=10.
MAPLE
g := z*(3-2*z-sqrt(1-4*z^2))/((1-z)^2*(1-2*z+sqrt(1-4*z^2))): gser := series(g, z = 0, 40): seq(coeff(gser, z, n), n = 0 .. 35);
MATHEMATICA
CoefficientList[Series[x (3-2x-Sqrt[1-4x^2])/((1-x)^2 (1-2x+ Sqrt[1-4x^2])) , {x, 0, 40}], x] (* Harvey P. Dale, Jun 19 2011 *)
PROG
(PARI) z='z+O('z^50); concat([0], Vec(z*(3-2*z-sqrt(1-4*z^2))/((1-z)^2*(1-2*z+sqrt(1-4*z^2))))) \\ G. C. Greubel, Mar 27 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jun 07 2011
STATUS
approved