login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191321
Number of dispersed Dyck paths of length n (i.e., Motzkin paths of length n with no (1,0) steps at positive heights) having only ascents of even length (an ascent is a maximal sequence of consecutive (1,1)-steps).
1
1, 1, 1, 1, 2, 3, 4, 5, 9, 14, 20, 27, 47, 74, 109, 153, 262, 415, 622, 894, 1516, 2410, 3653, 5335, 8988, 14323, 21883, 32330, 54213, 86543, 133004, 198229, 331233, 529462, 817432, 1226719, 2044151, 3270870, 5068346, 7648526, 12716872, 20365398, 31651555, 47984938, 79636493, 127621431
OFFSET
0,5
LINKS
FORMULA
G.f.: g(z) = 1/(1-z-z^4*c^2), where c = 1+z^4*c^3 or, equivalently, c=(2*sqrt(3)/(3*z^2))*sin((1/3)*arcsin(3*z^2*sqrt(3)/2)) (see the explicit expression of g(z) in the Maple program).
Recurrence: 4*(n-1)*n*(n+1)*(99*n^3 - 1131*n^2 + 4170*n - 4928)*a(n) = 4*(n-1)*n*(99*n^4 - 1032*n^3 + 2913*n^2 - 152*n - 5348)*a(n-1) + 4*(n-1)*(99*n^5 - 1032*n^4 + 3543*n^3 - 4190*n^2 + 1600*n - 3360)*a(n-2) - 24*(11*n^2 - 67*n + 96)*(21*n^2 - 101*n + 70)*a(n-3) + 3*(891*n^6 - 15525*n^5 + 106425*n^4 - 359079*n^3 + 600268*n^2 - 416180*n + 44800)*a(n-4) - 3*(891*n^6 - 15525*n^5 + 103905*n^4 - 329655*n^3 + 480420*n^2 - 222756*n - 49280)*a(n-5) - 3*n*(3*n - 14)*(3*n - 13)*(99*n^3 - 834*n^2 + 2205*n - 1790)*a(n-6). - Vaclav Kotesovec, Mar 17 2014
a(n) ~ (13+m) * 3^(3*n/4+m/4+1/2)/ (sqrt(Pi) * 2^(n/2-3+m/2) * n^(3/2)), where m = mod(n,4). - Vaclav Kotesovec, Mar 17 2014
a(n) = Sum_{m=0..n} ((m+1)*Sum_{i=0..floor((n+1)/4)-m-1)} ((binomial(2*m+3*i+1,i)*( binomial(n-3*(m+1)-4*i,m+1)))/(m+i+1)))+1. - Vladimir Kruchinin, Mar 12 2016
EXAMPLE
a(5)=3 because we have HHHHH, HUUDD, and UUDDH, where U=(1,1), H=(1,0), and D=(1,-1).
MAPLE
g := 3/(4*cos((1/3)*arcsin(3*z^2*sqrt(3)*1/2))^2-1-3*z): gser := series(g, z = 0, 48): seq(coeff(gser, z, n), n = 0 .. 45);
MATHEMATICA
CoefficientList[Series[3/(4*Cos[1/3*ArcSin[3*x^2*Sqrt[3]*1/2]]^2-1-3*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 17 2014 *)
PROG
(Maxima)
a(n):=sum((m+1)*sum((binomial(2*m+3*i+1, i)*( binomial(n-3*(m+1)-4*i, m+1)))/(m+i+1), i, 0, floor((n+1)/4)-(m+1)), m, 0, n)+1; /* Vladimir Kruchinin, Mar 11 2016 */
(PARI) a(n) = 1+ sum(m=0, n, ((m+1)*sum(i=0, floor((n+1)/4)-m-1, ((binomial(2*m+3*i+1, i)*( binomial(n-3*(m+1)-4*i, m+1)))/(m+i+1))))); \\ Michel Marcus, Mar 12 2016
CROSSREFS
Sequence in context: A050160 A230769 A099472 * A222432 A222433 A222434
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jun 01 2011
STATUS
approved