login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191318
Triangle read by rows: T(n,k) is the number of dispersed Dyck paths of length n (i.e., Motzkin paths of length n with no (1,0) steps at positive heights) having pyramid weight equal to k.
1
1, 1, 1, 1, 1, 2, 1, 3, 2, 1, 4, 5, 1, 5, 10, 4, 1, 6, 16, 12, 1, 7, 24, 30, 8, 1, 8, 33, 56, 28, 1, 9, 44, 98, 84, 16, 1, 10, 56, 152, 179, 64, 1, 11, 70, 228, 358, 224, 32, 1, 12, 85, 320, 618, 536, 144, 1, 13, 102, 440, 1030, 1206, 576, 64, 1, 14, 120, 580, 1580, 2292, 1528, 320, 1, 15, 140, 754, 2370, 4202, 3820, 1440, 128
OFFSET
0,6
COMMENTS
A pyramid in a dispersed Dyck path is a factor of the form U^h D^h, h being the height of the pyramid and U=(1,1), D=(1,-1). A pyramid in a dispersed Dyck path w is maximal if, as a factor in w, it is not immediately preceded by a U and immediately followed by a D. The pyramid weight of a dispersed Dyck path is the sum of the heights of its maximal pyramids.
Row n has 1 + floor(n/2) entries.
Sum of entries in row n is binomial(n, floor(n/2)) = A001405(n).
LINKS
A. Denise and R. Simion, Two combinatorial statistics on Dyck paths, Discrete Math., 137, 1995, 155-176.
FORMULA
T(n,0) = 1;
T(n,1) = n-1 (n>=1).
T(n,2) = A001859(n-3) (n>=4).
Sum_{k>=0} k*T(n,k) = A191319(n).
G.f.: G=G(t,z) satisfies z*(1-z)*(z-1+2*t*z^2)*G^2 + (1-z)*(z-1+2*t*z^2)*G+1-t*z^2=0.
EXAMPLE
T(6,2)=10 because we have HH(UD)(UD), HH(UUDD), H(UD)H(UD), H(UD)(UD)H, H(UUDD)H, (UD)HH(UD), (UD)H(UD)H, (UD)(UD)HH, (UUDD)HH, and U(UD)(UD)D, where U=(1,1), D=(1,-1), H=(1,0); the maximal pyramids are shown between parentheses.
Triangle starts:
1;
1;
1, 1;
1, 2;
1, 3, 2;
1, 4, 5;
1, 5, 10, 4;
1, 6, 16, 12;
1, 7, 24, 30, 8;
MAPLE
a := (z-1)*(2*t*z^2+z-1): c := -1+t*z^2: eq := a*z*G^2+a*G+c: f := RootOf(eq, G): fser := simplify(series(f, z = 0, 20)): for n from 0 to 16 do P[n] := sort(expand(coeff(fser, z, n))) end do: for n from 0 to 16 do seq(coeff(P[n], t, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Jun 01 2011
STATUS
approved