login
A191138
Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x+1 and 4x+3 are in a.
5
1, 4, 7, 13, 19, 22, 31, 40, 55, 58, 67, 79, 91, 94, 121, 127, 163, 166, 175, 202, 223, 235, 238, 271, 274, 283, 319, 364, 367, 379, 382, 487, 490, 499, 511, 526, 607, 655, 667, 670, 703, 706, 715, 811, 814, 823, 850, 895, 943, 955, 958, 1087, 1093, 1099, 1102, 1135, 1138, 1147, 1279, 1459, 1462, 1471, 1498, 1519, 1531, 1534
OFFSET
1,2
COMMENTS
See A191113.
LINKS
MATHEMATICA
h = 3; i = 1; j = 4; k = 3; f = 1; g = 9;
a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]] (* A191138 *)
b = (a - 1)/3; c = (a - 3)/4; r = Range[1, 1500];
d = Intersection[b, r] (* A191200 *)
e = Intersection[c, r] (* A191201 *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a191138 n = a191138_list !! (n-1)
a191138_list = f $ singleton 1
where f s = m : (f $ insert (3*m+1) $ insert (4*m+3) s')
where (m, s') = deleteFindMin s
-- Reinhard Zumkeller, Jun 01 2011
CROSSREFS
Cf. A191113.
Sequence in context: A266811 A085787 A111710 * A075315 A238327 A243811
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 28 2011
STATUS
approved