The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A191120 Increasing sequence generated by these rules:  a(1)=1, and if x is in a then 3x-1 and 4x-2 are in a. 5
 1, 2, 5, 6, 14, 17, 18, 22, 41, 50, 53, 54, 65, 66, 70, 86, 122, 149, 158, 161, 162, 194, 197, 198, 209, 210, 214, 257, 258, 262, 278, 342, 365, 446, 473, 482, 485, 486, 581, 590, 593, 594, 626, 629, 630, 641, 642, 646, 770, 773, 774, 785, 786, 790, 833, 834, 838, 854, 1025, 1026, 1030, 1046, 1094, 1110, 1337, 1366, 1418, 1445 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS See A191113. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 MATHEMATICA h = 3; i = -1; j = 4; k = -2; f = 1; g = 9; a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]]  (* A191120 *) b = (a + 1)/3; c = (a + 2)/4; r = Range[1, 1500]; d = Intersection[b, r] (* A191229 *) e = Intersection[c, r] (* A191165 *) PROG (Haskell) import Data.Set (singleton, deleteFindMin, insert) a191120 n = a191120_list !! (n-1) a191120_list = f \$ singleton 1    where f s = m : (f \$ insert (3*m-1) \$ insert (4*m-2) s')              where (m, s') = deleteFindMin s -- Reinhard Zumkeller, Jun 01 2011 CROSSREFS Cf. A191113, A191229, A191165. Sequence in context: A083097 A215147 A191229 * A245540 A211369 A006596 Adjacent sequences:  A191117 A191118 A191119 * A191121 A191122 A191123 KEYWORD nonn AUTHOR Clark Kimberling, May 27 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 31 19:37 EDT 2020. Contains 333151 sequences. (Running on oeis4.)