login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190959
a(n) = 3*a(n-1) - 5*a(n-2), with a(0)=0, a(1)=1.
2
0, 1, 3, 4, -3, -29, -72, -71, 147, 796, 1653, 979, -5328, -20879, -35997, -3596, 169197, 525571, 730728, -435671, -4960653, -12703604, -13307547, 23595379, 137323872, 293994721, 195364803, -883879196, -3628461603, -6465988829, -1255658472, 28562968729
OFFSET
0,3
COMMENTS
This is the Lucas U(P=3, Q=5) sequence. - R. J. Mathar, Oct 24 2012
a(n+2)/a(n+1) equals the continued fraction 3 - 5/(3 - 5/(3 - 5/(3 - ... - 5/3))) with n 5's. - Greg Dresden, Oct 06 2019
FORMULA
G.f.: x/(1 - 3*x + 5*x^2). - Philippe Deléham, Oct 11 2011
E.g.f.: 2*exp(3*x/2)*sin(sqrt(11)*x/2)/sqrt(11). - Stefano Spezia, Oct 06 2019
MATHEMATICA
LinearRecurrence[{3, -5}, {0, 1}, 50]
PROG
(PARI) x='x+O('x^30); concat([0], Vec(x/(1-3x+5*x^2))) \\ G. C. Greubel, Jan 25 2018
(Magma) I:=[0, 1]; [n le 2 select I[n] else 3*Self(n-1) - 5*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 25 2018
CROSSREFS
Cf. A190958 (index to generalized Fibonacci sequences), A190970 (binomial transf.), A106852 (inv. bin. transf., shifted).
Sequence in context: A287463 A288404 A287986 * A038018 A108658 A240669
KEYWORD
sign,easy
AUTHOR
STATUS
approved