login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190901
a(n) = Product_{k in M_n} k; M_n = {k | 1 <= k <= 2n and k mod 2 = n mod 2}.
2
1, 1, 8, 15, 384, 945, 46080, 135135, 10321920, 34459425, 3715891200, 13749310575, 1961990553600, 7905853580625, 1428329123020800, 6190283353629375, 1371195958099968000, 6332659870762850625, 1678343852714360832000
OFFSET
0,3
LINKS
Peter Luschny, Multifactorials
FORMULA
a(2*k) = A006882(4*k) = 4^k * Gamma(2*k+1).
a(2*k+1) = A001147(2*k+1) = 4^k * Gamma(2*k+3/2) / sqrt(Pi/4).
MAPLE
A190901 := proc(n) local k; mul(k, k = select(k-> k mod 2 = n mod 2, [$1 .. 2*n])) end: seq(A190901(n), n=0..18);
MATHEMATICA
a[n_] := With[{m = Mod[n, 2]}, Product[If[Mod[k, 2] == m, k, 1], {k, 1, 2*n}]]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Jan 27 2014 *)
CROSSREFS
Sequence in context: A212593 A153700 A343210 * A066916 A131446 A061746
KEYWORD
nonn
AUTHOR
Peter Luschny, Jun 23 2011
STATUS
approved