login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190636
a(n)=(n^3+3*n^7)/4.
1
1, 98, 1647, 12304, 58625, 210006, 617743, 1572992, 3587409, 7500250, 14615711, 26874288, 47061937, 79060814, 128145375, 201327616, 307755233, 459166482, 670405519, 960002000, 1350818721, 1870771078, 2553622127, 3439857024, 4577640625, 6023862026, 7845269823
OFFSET
1,2
COMMENTS
Each term is the difference of two cubes because ((n^3+n)/2)^3-((n^3-n)/2)^3=(n^3+3*n^7)/4. More generally, ((n^s+n)/2)^3-((n^s-n)/2)^3 = (n^3+3*n^(2s+1))/4 for any s; in this case, s=3.
LINKS
Rafael Parra Machío, Ecuaciones Diofanticas, p. 24
Rafael Parra Machío, Ecuaciones Cuarticas, p. 11
FORMULA
a(n) = ((n^3+n)/2)^3 - ((n^3-n)/2)^3.
G.f.: (z^7+90*z^6+891*z^5+1816*z^4+891*z^3+90*z^2+z)/(z-1)^8.
EXAMPLE
58625=65^3-60^3=(5^3+3*5^7)/4; 47061937=1105^3-1092^3=(13^3 + 3*13^7)/4
MATHEMATICA
Table[((n^3+n)/2)^3 - ((n^3-n)/2)^3, {n, 1, 20}]
Table[1/4*(n^3+3 n^7), {n, 1, 20}]
CROSSREFS
Sequence in context: A292552 A233373 A221747 * A019563 A285045 A197616
KEYWORD
nonn,easy
AUTHOR
Rafael Parra Machio, May 15 2011
STATUS
approved