login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190519
a(n) = n + [ns/r] + [nt/r] + [nu/r] + [nv/r] + [nw/r], where r=sin(x), s=cos(x), t=tan(x), u=csc(x), v=sec(x), w=cot(x), x=2*Pi/5.
6
8, 16, 26, 35, 45, 54, 63, 72, 82, 93, 101, 110, 121, 129, 139, 148, 157, 167, 177, 186, 195, 205, 214, 223, 233, 242, 251, 261, 270, 281, 290, 298, 308, 318, 327, 336, 345, 355, 365, 374, 384, 392, 402, 412, 421, 429, 440, 450, 458, 469, 478, 486, 497, 505, 514, 525, 534, 543, 553, 563, 571, 581, 590, 599, 610, 618, 627, 639
OFFSET
1,1
COMMENTS
This is one of six sequences that partition the positive integers. In general, suppose that r, s, t, u, v, w are positive real numbers for which the sets {i/r : i>=1}, {j/s : j>=1}, {k/t : k>=1, {h/u : h>=1}, {p/v : p>=1}, {q/w : q>=1} are pairwise disjoint. Let a(n) be the rank of n/r when all the numbers in the six sets are jointly ranked. Define b(n), c(n), d(n), e(n), f(n) as the ranks of n/s, n/t, n/u, n/v, n/w respectively. It is easy to prove that
a(n) = n + [ns/r] + [nt/r] + [nu/r] + [nv/r] + [nw/r],
b(n) = [nr/s] + [nt/s] + [nu/s] + [nv/s] + [nw/s],
c(n) = [nr/t] + [ns/t] + [nu/t] + [nv/t] + [nw/t],
d(n) = n + [nr/u] + [ns/u] + [nt/u] + [nv/u] + [nw/u],
e(n) = n + [nr/v] + [ns/v] + [nt/v] + [nu/v] + [nw/v],
f(n) = n + [nr/w] + [ns/w] + [nt/w] + [nu/w] + [nv/w], where []=floor. Choosing r=sin(x), s=cos(x), t=tan(x), u=csc(x), v=sec(x), w=cot(x), x=2*Pi/5, gives a=A190519, b=A190520, c=A190521, d=A190522, e=A190523, f=A190524.
MATHEMATICA
x = 2Pi/5;
r = Sin[x]; s = Cos[x]; t = Tan[x]; u = 1/r; v = 1/s; w = 1/t;
p[n_, h_, k_] := Floor[n*h/k]
a[n_] := n + p[n, s, r] + p[n, t, r] + p[n, u, r] + p[n, v, r] + p[n, w, r]
b[n_] := n + p[n, r, s] + p[n, t, s] + p[n, u, s] + p[n, v, s] + p[n, w, s]
c[n_] := n + p[n, r, t] + p[n, s, t] + p[n, u, t] + p[n, v, t] + p[n, w, t]
d[n_] := n + p[n, r, u] + p[n, s, u] + p[n, t, u] + p[n, v, u] + p[n, w, u]
e[n_] := n + p[n, r, v] + p[n, s, v] + p[n, t, v] + p[n, u, v] + p[n, w, v]
f[n_] := n + p[n, r, w] + p[n, s, w] + p[n, t, w] + p[n, u, w] + p[n, v, w]
Table[a[n], {n, 1, 120}] (* A190519 *)
Table[b[n], {n, 1, 120}] (* A190520 *)
Table[c[n], {n, 1, 120}] (* A190521 *)
Table[d[n], {n, 1, 120}] (* A190522 *)
Table[e[n], {n, 1, 120}] (* A190523 *)
Table[f[n], {n, 1, 120}] (* A190524 *)
CROSSREFS
Cf. A190520, A190521, A190522, A190523, A190524 (the other 5 members of the partition) and A190513-A190518 (based on Pi/5).
Sequence in context: A182767 A302537 A074750 * A341611 A083419 A329134
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 11 2011
STATUS
approved