login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190370
a(n) = n + [n*r/t] + [n*s/t] + [n*u/t]; r=sin(Pi/5), s=cos(Pi/5), t=sin(2*Pi/5), u=cos(2*Pi/5).
4
1, 4, 6, 10, 13, 15, 18, 20, 23, 27, 29, 32, 36, 37, 40, 43, 46, 49, 52, 55, 56, 60, 63, 65, 69, 72, 73, 77, 79, 82, 86, 88, 91, 94, 96, 99, 102, 105, 108, 110, 113, 115, 118, 122, 124, 127, 130, 132, 135, 138, 141, 144, 147, 149, 151, 155, 158, 160, 164, 167, 168, 172, 174, 177, 181, 183, 185, 189, 191, 194, 197, 200
OFFSET
1,2
COMMENTS
See A190368.
LINKS
FORMULA
A190368: f(n) = n + floor(n*cot(Pi/5)) + floor(2*n*cos(Pi/5)) + floor(n*cos(2*Pi/5)/sin(Pi/5)).
A190369: g(n) = n + floor(n*tan(Pi/5)) + floor(2*n*sin(Pi/5)) + floor(n*cos(2*Pi/5)/cos(Pi/5)).
A190370: h(n) = n + floor(n*sec(Pi/5)/2) + floor(n*csc(Pi/5)/2) + floor(n*cot(2*Pi/5)).
A190371: i(n) = n + floor(n*sin(Pi/5)/cos(2*Pi/5)) + floor(n*cos(Pi/5)/cos(2*Pi/5)) + floor(n*tan(2*Pi/5)).
MAPLE
r:=sin(Pi/5): s:=cos(Pi/5): t:=sin(2*Pi/5): u:=cos(2*Pi/5): seq(n+floor(n*r/t)+floor(n*s/t)+floor(n*u/t), n=1..80); # Muniru A Asiru, Apr 08 2018
MATHEMATICA
r=Sin[Pi/5]; s=Cos[Pi/5]; t=Sin[2*Pi/5]; u=Cos[2*Pi/5];
f[n_] := n + Floor[n*s/r] + Floor[n*t/r] + Floor[n*u/r];
g[n_] := n + Floor[n*r/s] + Floor[n*t/s] + Floor[n*u/s];
h[n_] := n + Floor[n*r/t] + Floor[n*s/t] + Floor[n*u/t];
i[n_] := n + Floor[n*r/u] + Floor[n*s/u] + Floor[n*t/u];
Table[f[n], {n, 1, 120}] (* A190368 *)
Table[g[n], {n, 1, 120}] (* A190369 *)
Table[h[n], {n, 1, 120}] (* A190370 *)
Table[i[n], {n, 1, 120}] (* A190371 *)
PROG
(PARI) for(n=1, 100, print1(n + floor(n/(2*cos(Pi/5))) + floor(n/(2*sin(Pi/5))) + floor(n/tan(2*Pi/5)), ", ")) \\ G. C. Greubel, Apr 05 2018
(Magma) R:=RealField(); [n + Floor(n/(2*Cos(Pi(R)/5))) + Floor(n/(2*Sin(Pi(R)/5))) + Floor(n/Tan(2*Pi(R)/5)): n in [1..100]]; // G. C. Greubel, Apr 05 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 09 2011
STATUS
approved