The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A190370 a(n) = n + [n*r/t] + [n*s/t] + [n*u/t]; r=sin(Pi/5), s=cos(Pi/5), t=sin(2*Pi/5), u=cos(2*Pi/5). 4
 1, 4, 6, 10, 13, 15, 18, 20, 23, 27, 29, 32, 36, 37, 40, 43, 46, 49, 52, 55, 56, 60, 63, 65, 69, 72, 73, 77, 79, 82, 86, 88, 91, 94, 96, 99, 102, 105, 108, 110, 113, 115, 118, 122, 124, 127, 130, 132, 135, 138, 141, 144, 147, 149, 151, 155, 158, 160, 164, 167, 168, 172, 174, 177, 181, 183, 185, 189, 191, 194, 197, 200 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS See A190368. LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 FORMULA A190368: f(n) = n + floor(n*cot(Pi/5)) + floor(2*n*cos(Pi/5)] + floor(n*cos(2*Pi/5)/sin(Pi/5)). A190369: g(n) = n + floor(n*tan(Pi/5)) + floor(2*n*sin(Pi/5)] + floor(n*cos(2*Pi/5)/cos(Pi/5)). A190370: h(n) = n + floor(n*sec(Pi/5)/2) + floor(n*csc(Pi/5)/2] + floor(n*cot(2*Pi/5)). A190371: i(n) = n + floor(n*sin(Pi/5)/cos(2*Pi/5)) + floor(n*cos(Pi/5)/cos(2*Pi/5)) + floor(n*tan(2*Pi/5)). MAPLE r:=sin(Pi/5): s:=cos(Pi/5): t:=sin(2*Pi/5): u:=cos(2*Pi/5): seq(n+floor(n*r/t)+floor(n*s/t)+floor(n*u/t), n=1..80); # Muniru A Asiru, Apr 08 2018 MATHEMATICA r=Sin[Pi/5]; s=Cos[Pi/5]; t=Sin[2*Pi/5]; u=Cos[2*Pi/5]; f[n_] := n + Floor[n*s/r] + Floor[n*t/r] + Floor[n*u/r]; g[n_] := n + Floor[n*r/s] + Floor[n*t/s] + Floor[n*u/s]; h[n_] := n + Floor[n*r/t] + Floor[n*s/t] + Floor[n*u/t]; i[n_] := n + Floor[n*r/u] + Floor[n*s/u] + Floor[n*t/u]; Table[f[n], {n, 1, 120}] (* A190368 *) Table[g[n], {n, 1, 120}] (* A190369 *) Table[h[n], {n, 1, 120}] (* A190370 *) Table[i[n], {n, 1, 120}] (* A190371 *) PROG (PARI) for(n=1, 100, print1(n + floor(n/(2*cos(Pi/5))) + floor(n/(2*sin(Pi/5))) + floor(n/tan(2*Pi/5)), ", ")) \\ G. C. Greubel, Apr 05 2018 (Magma) R:=RealField(); [n + Floor(n/(2*Cos(Pi(R)/5))) + Floor(n/(2*Sin(Pi(R)/5))) + Floor(n/Tan(2*Pi(R)/5)): n in [1..100]]; // G. C. Greubel, Apr 05 2018 CROSSREFS Cf. A190368, A190369, A190371. Sequence in context: A234965 A320881 A224796 * A246439 A186514 A184402 Adjacent sequences: A190367 A190368 A190369 * A190371 A190372 A190373 KEYWORD nonn AUTHOR Clark Kimberling, May 09 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 07:02 EDT 2024. Contains 372729 sequences. (Running on oeis4.)