OFFSET
1,2
COMMENTS
See A190368.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000
FORMULA
A190368: f(n) = n + floor(n*cot(Pi/5)) + floor(2*n*cos(Pi/5)) + floor(n*cos(2*Pi/5)/sin(Pi/5)).
A190369: g(n) = n + floor(n*tan(Pi/5)) + floor(2*n*sin(Pi/5)) + floor(n*cos(2*Pi/5)/cos(Pi/5)).
A190370: h(n) = n + floor(n*sec(Pi/5)/2) + floor(n*csc(Pi/5)/2) + floor(n*cot(2*Pi/5)).
A190371: i(n) = n + floor(n*sin(Pi/5)/cos(2*Pi/5)) + floor(n*cos(Pi/5)/cos(2*Pi/5)) + floor(n*tan(2*Pi/5)).
MAPLE
r:=sin(Pi/5): s:=cos(Pi/5): t:=sin(2*Pi/5): u:=cos(2*Pi/5): seq(n+floor(n*r/t)+floor(n*s/t)+floor(n*u/t), n=1..80); # Muniru A Asiru, Apr 08 2018
MATHEMATICA
r=Sin[Pi/5]; s=Cos[Pi/5]; t=Sin[2*Pi/5]; u=Cos[2*Pi/5];
f[n_] := n + Floor[n*s/r] + Floor[n*t/r] + Floor[n*u/r];
g[n_] := n + Floor[n*r/s] + Floor[n*t/s] + Floor[n*u/s];
h[n_] := n + Floor[n*r/t] + Floor[n*s/t] + Floor[n*u/t];
i[n_] := n + Floor[n*r/u] + Floor[n*s/u] + Floor[n*t/u];
Table[f[n], {n, 1, 120}] (* A190368 *)
Table[g[n], {n, 1, 120}] (* A190369 *)
Table[h[n], {n, 1, 120}] (* A190370 *)
Table[i[n], {n, 1, 120}] (* A190371 *)
PROG
(PARI) for(n=1, 100, print1(n + floor(n/(2*cos(Pi/5))) + floor(n/(2*sin(Pi/5))) + floor(n/tan(2*Pi/5)), ", ")) \\ G. C. Greubel, Apr 05 2018
(Magma) R:=RealField(); [n + Floor(n/(2*Cos(Pi(R)/5))) + Floor(n/(2*Sin(Pi(R)/5))) + Floor(n/Tan(2*Pi(R)/5)): n in [1..100]]; // G. C. Greubel, Apr 05 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 09 2011
STATUS
approved