The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A190370 a(n) = n + [n*r/t] + [n*s/t] + [n*u/t]; r=sin(Pi/5), s=cos(Pi/5), t=sin(2*Pi/5), u=cos(2*Pi/5). 4
1, 4, 6, 10, 13, 15, 18, 20, 23, 27, 29, 32, 36, 37, 40, 43, 46, 49, 52, 55, 56, 60, 63, 65, 69, 72, 73, 77, 79, 82, 86, 88, 91, 94, 96, 99, 102, 105, 108, 110, 113, 115, 118, 122, 124, 127, 130, 132, 135, 138, 141, 144, 147, 149, 151, 155, 158, 160, 164, 167, 168, 172, 174, 177, 181, 183, 185, 189, 191, 194, 197, 200 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
See A190368.
LINKS
FORMULA
A190368: f(n) = n + floor(n*cot(Pi/5)) + floor(2*n*cos(Pi/5)] + floor(n*cos(2*Pi/5)/sin(Pi/5)).
A190369: g(n) = n + floor(n*tan(Pi/5)) + floor(2*n*sin(Pi/5)] + floor(n*cos(2*Pi/5)/cos(Pi/5)).
A190370: h(n) = n + floor(n*sec(Pi/5)/2) + floor(n*csc(Pi/5)/2] + floor(n*cot(2*Pi/5)).
A190371: i(n) = n + floor(n*sin(Pi/5)/cos(2*Pi/5)) + floor(n*cos(Pi/5)/cos(2*Pi/5)) + floor(n*tan(2*Pi/5)).
MAPLE
r:=sin(Pi/5): s:=cos(Pi/5): t:=sin(2*Pi/5): u:=cos(2*Pi/5): seq(n+floor(n*r/t)+floor(n*s/t)+floor(n*u/t), n=1..80); # Muniru A Asiru, Apr 08 2018
MATHEMATICA
r=Sin[Pi/5]; s=Cos[Pi/5]; t=Sin[2*Pi/5]; u=Cos[2*Pi/5];
f[n_] := n + Floor[n*s/r] + Floor[n*t/r] + Floor[n*u/r];
g[n_] := n + Floor[n*r/s] + Floor[n*t/s] + Floor[n*u/s];
h[n_] := n + Floor[n*r/t] + Floor[n*s/t] + Floor[n*u/t];
i[n_] := n + Floor[n*r/u] + Floor[n*s/u] + Floor[n*t/u];
Table[f[n], {n, 1, 120}] (* A190368 *)
Table[g[n], {n, 1, 120}] (* A190369 *)
Table[h[n], {n, 1, 120}] (* A190370 *)
Table[i[n], {n, 1, 120}] (* A190371 *)
PROG
(PARI) for(n=1, 100, print1(n + floor(n/(2*cos(Pi/5))) + floor(n/(2*sin(Pi/5))) + floor(n/tan(2*Pi/5)), ", ")) \\ G. C. Greubel, Apr 05 2018
(Magma) R:=RealField(); [n + Floor(n/(2*Cos(Pi(R)/5))) + Floor(n/(2*Sin(Pi(R)/5))) + Floor(n/Tan(2*Pi(R)/5)): n in [1..100]]; // G. C. Greubel, Apr 05 2018
CROSSREFS
Sequence in context: A234965 A320881 A224796 * A246439 A186514 A184402
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 09 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 07:02 EDT 2024. Contains 372729 sequences. (Running on oeis4.)