login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190345
a(n) = n + [n*r/s] + [n*t/s]; r=1, s=sqrt(5/2), t=sqrt(2/5).
3
1, 3, 5, 7, 10, 11, 13, 16, 17, 20, 21, 23, 26, 27, 30, 32, 33, 36, 38, 40, 42, 43, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 71, 72, 74, 77, 78, 81, 82, 84, 87, 88, 91, 93, 94, 97, 98, 101, 103, 104, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 132, 133, 135, 138, 139, 142, 143, 145, 148, 149, 152
OFFSET
1,2
COMMENTS
See A190344.
LINKS
FORMULA
A190344: f(n) = n + [n*sqrt(5/2)] + [n*sqrt(2/5)].
A190345: g(n) = n + [n*sqrt(2/5)] + [2*n/5].
A190346: h(n) = 3*n + [n*sqrt(5/2)] + [n/2].
MATHEMATICA
r=1; s=(5/2)^(1/2); t=1/s;
f[n_] := n + Floor[n*s/r] + Floor[n*t/r];
g[n_] := n + Floor[n*r/s] + Floor[n*t/s];
h[n_] := n + Floor[n*r/t] + Floor[n*s/t];
Table[f[n], {n, 1, 120}] (* A190344 *)
Table[g[n], {n, 1, 120}] (* A190345 *)
Table[h[n], {n, 1, 120}] (* A190346 *)
PROG
(PARI) for(n=1, 100, print1(n + floor(n*sqrt(2/5)) + floor(2*n/5), ", ")) \\ G. C. Greubel, Apr 05 2018
(Magma) [n + Floor(n*Sqrt(2/5)) + Floor(2*n/5): n in [1..100]]; // G. C. Greubel, Apr 05 2018
CROSSREFS
Sequence in context: A246955 A167907 A306639 * A189516 A138968 A299498
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 09 2011
STATUS
approved