login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190337
a(n) = n + [n*r/t] + [n*s/t]; r=2, s=sqrt(2), t=1/s.
3
5, 11, 17, 23, 29, 34, 40, 46, 52, 58, 64, 69, 75, 81, 87, 93, 99, 104, 110, 116, 122, 128, 134, 139, 145, 151, 157, 163, 169, 174, 180, 186, 192, 198, 203, 209, 215, 221, 227, 233, 238, 244, 250, 256, 262, 268, 273, 279, 285, 291, 297, 303, 308, 314, 320, 326, 332, 338, 343, 349, 355, 361, 367, 373, 378, 384, 390, 396, 402, 407
OFFSET
1,1
COMMENTS
See A190335.
LINKS
FORMULA
A190335: f(n) = n + [n*sqrt(2)] + [n/sqrt(8)].
A190336: g(n) = n + [n/sqrt(2)] + [n/2].
A190337: h(n) = 3*n + [n*sqrt(8)].
MATHEMATICA
r=2; s=2^(1/2); t=1/s;
f[n_] := n + Floor[n*s/r] + Floor[n*t/r];
g[n_] := n + Floor[n*r/s] + Floor[n*t/s];
h[n_] := n + Floor[n*r/t] + Floor[n*s/t];
Table[f[n], {n, 1, 120}] (*A190335*)
Table[g[n], {n, 1, 120}] (*A190336*)
Table[h[n], {n, 1, 120}] (*A190337*)
PROG
(PARI) for(n=1, 100, print1(3*n + floor(n*sqrt(8)), ", ")) \\ G. C. Greubel, Apr 04 2018
(Magma) R:=RealField(); [3*n + Floor(n*Sqrt(8)): n in [1..100]]; // G. C. Greubel, Apr 04 2018
CROSSREFS
Sequence in context: A314245 A314246 A314247 * A189751 A314248 A314249
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 08 2011
STATUS
approved