login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190207
a(n) = [n*u + n*v] - [n*u] - [n*v], where u=sqrt(7), v=1/u, and []=floor.
3
1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0
OFFSET
1
LINKS
MATHEMATICA
u = 7^(1/2); v = 1/u;
f[n_] := Floor[n*u + n*v] - Floor[n*u] - Floor[n*v]
t = Table[f[n], {n, 1, 120}] (* A190207 *)
Flatten[Position[t, 0]] (* A190208 *)
Flatten[Position[t, 1]] (* A190209 *)
PROG
(PARI) for(n=1, 30, print1(floor(n*(sqrt(7) + 1/sqrt(7))) - floor(n*sqrt(7)) - floor(n/sqrt(7)), ", ")) \\ G. C. Greubel, Dec 27 2017
(Magma) [Floor(n*(Sqrt(7) + 1/Sqrt(7))) - Floor(n*Sqrt(7)) - Floor(n/Sqrt(7)): n in [1..30]]; // G. C. Greubel, Dec 27 2017
CROSSREFS
Sequence in context: A179775 A341952 A167686 * A156706 A075743 A136705
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 05 2011
STATUS
approved