login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190058
a(n) = n + [n*r/t] + [n*s/t]; r=1/2, s=sin(Pi/3), t=csc(Pi/3).
3
1, 3, 6, 8, 10, 12, 15, 17, 18, 21, 23, 26, 27, 30, 32, 34, 36, 38, 41, 43, 45, 47, 49, 52, 53, 56, 58, 61, 62, 64, 67, 69, 71, 73, 76, 78, 80, 82, 84, 87, 88, 91, 93, 96, 97, 99, 102, 104, 106, 108, 111, 113, 114, 117, 119, 122, 123, 126, 128, 130, 132, 134, 137, 139, 141, 143, 146, 148, 149, 152, 154, 157, 158, 161, 163, 165, 167
OFFSET
1,2
COMMENTS
See A190056.
LINKS
FORMULA
A190056: a(n) = n + [2*n*sin(Pi/3)] + [2*n*csc(Pi/3)].
A190057: b(n) = n + [(n/2)*csc(Pi/3)] + [n*(csc(Pi/3))^2].
A190058: c(n) = n + [(n/2)*sin(Pi/3)] + [n*(sin(Pi/3))^2].
MATHEMATICA
r=1/2; s=Sin[Pi/3]; t=Csc[Pi/3];
a[n_] := n + Floor[n*s/r] + Floor[n*t/r];
b[n_] := n + Floor[n*r/s] + Floor[n*t/s];
c[n_] := n + Floor[n*r/t] + Floor[n*s/t];
Table[a[n], {n, 1, 120}] (* A190056 *)
Table[b[n], {n, 1, 120}] (* A190057 *)
Table[c[n], {n, 1, 120}] (* A190058 *)
PROG
(PARI) for(n=1, 30, print1(n + floor(n*sin(Pi/3)/2) + floor(n*(sin(Pi/3))^2), ", ")) \\ G. C. Greubel, Jan 10 2018
(Magma) C<i> := ComplexField(); [n + Floor(n*Sin(Pi(C)/3)/2) + Floor(n*(Sin(Pi(C)/3))^2): n in [1..30]]; // G. C. Greubel, Jan 10 2018
CROSSREFS
Sequence in context: A112234 A189467 A023983 * A159061 A257874 A180398
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 04 2011
STATUS
approved