login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A190004 A190002/2. 3
2, 4, 7, 9, 11, 14, 16, 19, 21, 23, 26, 28, 30, 33, 35, 38, 40, 42, 45, 47, 50, 52, 54, 57, 59, 61, 64, 66, 69, 71, 73, 76, 78, 80, 83, 85, 88, 90, 92, 95, 97, 100, 102, 104, 107, 109, 111, 114, 116, 119, 121, 123, 126, 128, 130, 133, 135, 138, 140, 142, 145, 147, 150, 152, 154, 157, 159, 161, 164, 166, 169, 171, 173, 176 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

See A180002.

First differs from A182761 at n=55: a(55)=130, A182761(55)=131. - Bruno Berselli, Jun 04 2013

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

FORMULA

A190002:  a(n) = n + [n*(sinh(1))^2] + [n*(cosh(1))^2].

A190003:  b(n) = n + [n*(csch(1))^2] + [n*(coth(1))^2].

A190004:  a(n)/2 = (n + [n*(sinh(1))^2] + [n*(cosh(1))^2])/2.

A005408:  c(n) = 2*n - 1.

MATHEMATICA

r=1; s=Sinh[1]^2; t=Cosh[1]^2;

a[n_] := n + Floor[n*s/r] + Floor[n*t/r];

b[n_] := n + Floor[n*r/s] + Floor[n*t/s];

c[n_] := n + Floor[n*r/t] + Floor[n*s/t];

Table[a[n], {n, 1, 120}]  (* A190002 *)

Table[b[n], {n, 1, 120}]  (* A190003 *)

Table[c[n], {n, 1, 120}]  (* A005408 *)

Table[a[n]/2, {n, 1, 120}](* A190004 *)

Table[b[n]/2, {n, 1, 120}](* A182760 *)

PROG

(PARI) for(n=1, 100, print1((n + floor(n*(sinh(1))^2) + floor(n*(cosh(1))^2))/2, ", ")) \\ G. C. Greubel, Jan 11 2018

(MAGMA) [(n + Floor(n*(Sinh(1))^2) + Floor(n*(Cosh(1))^2))/2: n in [1..100]]; // G. C. Greubel, Jan 11 2018

CROSSREFS

Cf. A190002, A190003.

Sequence in context: A292647 A307645 A287235 * A182761 A329830 A081841

Adjacent sequences:  A190001 A190002 A190003 * A190005 A190006 A190007

KEYWORD

nonn

AUTHOR

Clark Kimberling, May 03 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 24 00:05 EST 2022. Contains 350515 sequences. (Running on oeis4.)