login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The n-th derivative of exp(2*arctan(x) - Pi/2), evaluated at x=1.
1

%I #17 Jan 15 2018 14:44:05

%S 1,1,0,-1,2,0,-20,100,-180,-1540,18800,-99900,-35000,6978400,

%T -81010800,418106000,2652650000,-89962470000,1078639120000,

%U -4572607130000,-102140361180000,2809462217120000,-34739768494600000,80549366231880000,7017075372032440000

%N The n-th derivative of exp(2*arctan(x) - Pi/2), evaluated at x=1.

%C The n-th derivative of exp(2*arctan(x)) A(n,x) = (n!*e^(2*arctan(x))*sum(m=1..n, sum(k=m..n, (sum(j=m..k, (2^j*Stirling1(j,m)*binomial(k-1,j-1))/j!))*((-1)^((m+3*k)/2)+(-1)^((k-m)/2))*(-1)^(n-k)*binomial(n-1,k-1)*x^(n-k))))/(2*(x^2+1)^n).

%H Alois P. Heinz, <a href="/A189772/b189772.txt">Table of n, a(n) for n = 0..477</a>

%H Vladimir Kruchinin, <a href="http://arxiv.org/abs/1104.5065">Derivation of Bell Polynomials of the Second Kind</a>, arXiv:1104.5065

%F a(n) = n!*sum(m=1..n, 2^(-n-1)*sum(k=m..n, (sum(j=m..k, (2^j*Stirling1(j,m) * binomial(k-1,j-1))/j!))*((-1)^((m+3*k)/2) + (-1)^((k-m)/2))*(-1)^(n-k)*binomial(n-1,k-1))), n>0, a(0)=1.

%F E.g.f.: exp(2*arctan(x+1)-Pi/2). - _Alois P. Heinz_, Sep 27 2016

%t f[x_] := Exp[2*ArcTan[x] - Pi/2]; a[n_] := Derivative[n][f][1]; Table[a[n], {n, 0, 20}] (* or *) a[n_] := n!* Sum[ 2^(-n-1)*Sum[ (Sum[ (2^j*StirlingS1[j, m]*Binomial[k-1, j-1])/j!, {j, m, k}])*((-1)^((m + 3*k)/2) + (-1)^((k - m)/2))*(-1)^(n-k)*Binomial[n-1, k-1], {k, m, n}], {m, 1, n}]; Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Feb 22 2013 *)

%o (Maxima)

%o a(n):=n!*sum(2^(-n-1)*sum((sum((2^j*stirling1(j,m)*binomial(k-1,j-1))/j!,j,m,k))*((-1)^((m+3*k)/2)+(-1)^((k-m)/2))*(-1)^(n-k)*binomial(n-1,k-1),k,m,n),m,1,n);

%K sign

%O 0,5

%A _Vladimir Kruchinin_, Apr 27 2011