login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189772
The n-th derivative of exp(2*arctan(x) - Pi/2), evaluated at x=1.
1
1, 1, 0, -1, 2, 0, -20, 100, -180, -1540, 18800, -99900, -35000, 6978400, -81010800, 418106000, 2652650000, -89962470000, 1078639120000, -4572607130000, -102140361180000, 2809462217120000, -34739768494600000, 80549366231880000, 7017075372032440000
OFFSET
0,5
COMMENTS
The n-th derivative of exp(2*arctan(x)) A(n,x) = (n!*e^(2*arctan(x))*sum(m=1..n, sum(k=m..n, (sum(j=m..k, (2^j*Stirling1(j,m)*binomial(k-1,j-1))/j!))*((-1)^((m+3*k)/2)+(-1)^((k-m)/2))*(-1)^(n-k)*binomial(n-1,k-1)*x^(n-k))))/(2*(x^2+1)^n).
LINKS
Vladimir Kruchinin, Derivation of Bell Polynomials of the Second Kind, arXiv:1104.5065
FORMULA
a(n) = n!*sum(m=1..n, 2^(-n-1)*sum(k=m..n, (sum(j=m..k, (2^j*Stirling1(j,m) * binomial(k-1,j-1))/j!))*((-1)^((m+3*k)/2) + (-1)^((k-m)/2))*(-1)^(n-k)*binomial(n-1,k-1))), n>0, a(0)=1.
E.g.f.: exp(2*arctan(x+1)-Pi/2). - Alois P. Heinz, Sep 27 2016
MATHEMATICA
f[x_] := Exp[2*ArcTan[x] - Pi/2]; a[n_] := Derivative[n][f][1]; Table[a[n], {n, 0, 20}] (* or *) a[n_] := n!* Sum[ 2^(-n-1)*Sum[ (Sum[ (2^j*StirlingS1[j, m]*Binomial[k-1, j-1])/j!, {j, m, k}])*((-1)^((m + 3*k)/2) + (-1)^((k - m)/2))*(-1)^(n-k)*Binomial[n-1, k-1], {k, m, n}], {m, 1, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 22 2013 *)
PROG
(Maxima)
a(n):=n!*sum(2^(-n-1)*sum((sum((2^j*stirling1(j, m)*binomial(k-1, j-1))/j!, j, m, k))*((-1)^((m+3*k)/2)+(-1)^((k-m)/2))*(-1)^(n-k)*binomial(n-1, k-1), k, m, n), m, 1, n);
CROSSREFS
Sequence in context: A365862 A209868 A182661 * A217311 A266167 A290465
KEYWORD
sign
AUTHOR
Vladimir Kruchinin, Apr 27 2011
STATUS
approved