This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A189512 n+[ns/r]+[nt/r]; r=1, s=e/3, t=3/e. 3
 2, 5, 8, 11, 14, 17, 20, 23, 26, 30, 32, 35, 38, 41, 44, 47, 50, 53, 56, 60, 63, 65, 68, 71, 74, 77, 80, 83, 87, 90, 93, 95, 98, 101, 104, 107, 110, 113, 117, 120, 123, 126, 128, 131, 134, 137, 140, 143, 147, 150, 153, 156, 159, 161, 164, 167, 170, 174, 177, 180, 183, 186, 189, 191, 194, 197, 200, 204, 207, 210, 213, 216, 219, 222, 224, 227, 230, 234, 237, 240, 243, 246, 249 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This is one of three sequences that partition the positive integers.  In general, suppose that r, s, t are positive real numbers for which the sets {i/r: i>=1}, {j/s: j>=1}, {k/t: k>=1} are pairwise disjoint.  Let a(n) be the rank of n/r when all the numbers in the three sets are jointly ranked.  Define b(n) and c(n) as the ranks of n/s and n/t.  It is easy to prove that a(n)=n+[ns/r]+[nt/r], b(n)=n+[nr/s]+[nt/s], c(n)=n+[nr/t]+[ns/t], where []=floor. Taking r=1, s=e/3, t=3/e gives a=A189512, b=A189513, c=A189514. LINKS MATHEMATICA r=1; s=E/3; t=3/E; a[n_] := n + Floor[n*s/r] + Floor[n*t/r]; b[n_] := n + Floor[n*r/s] + Floor[n*t/s]; c[n_] := n + Floor[n*r/t] + Floor[n*s/t]; Table[a[n], {n, 1, 120}]  (*A189512*) Table[b[n], {n, 1, 120}]  (*A189513*) Table[c[n], {n, 1, 120}]  (*A189514*) CROSSREFS Cf. A189513, A189514. Sequence in context: A016789 A190082 A165334 * A190361 A184905 A279773 Adjacent sequences:  A189509 A189510 A189511 * A189513 A189514 A189515 KEYWORD nonn AUTHOR Clark Kimberling, Apr 23 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 21 00:49 EDT 2019. Contains 325189 sequences. (Running on oeis4.)