login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189469
a(n) = n + [n*s/r] + [n*t/r]; r=1, s=1+sqrt(2), t=1+sqrt(3).
3
5, 11, 18, 23, 30, 36, 42, 48, 54, 61, 67, 72, 79, 85, 91, 97, 104, 110, 115, 122, 128, 135, 140, 146, 153, 159, 165, 171, 178, 183, 189, 196, 202, 208, 214, 220, 227, 232, 239, 245, 251, 257, 263, 270, 275, 282, 288, 294, 300, 306, 313, 319, 324, 331, 337, 343, 349, 356, 362, 367, 374, 380, 387, 392, 398, 405, 411, 417, 423, 429, 435, 441, 448, 454, 460, 466, 472, 479, 484, 491, 497, 503
OFFSET
1,1
COMMENTS
This is one of three sequences that partition the positive integers. In general, suppose that r, s, t are positive real numbers for which the sets {i/r: i>=1}, {j/s: j>=1}, {k/t: k>=1} are pairwise disjoint. Let a(n) be the rank of n/r when all the numbers in the three sets are jointly ranked. Define b(n) and c(n) as the ranks of n/s and n/t. It is easy to prove that
f(n) = n + [n*s/r] + [n*t/r],
g(n) = n + [n*r/s] + [n*t/s],
h(n) = n + [n*r/t] + [n*s/t], where []=floor.
Taking r=1, s=1+sqrt(2), t=1+sqrt(3) gives f=A189469, g=A189470, h=A189471.
LINKS
MATHEMATICA
r=1; s=1+Sqrt[2]; t=1+Sqrt[3];
f[n_]:= n + Floor[n*s/r] + Floor[n*t/r];
g[n_]:= n + Floor[n*r/s] + Floor[n*t/s];
h[n_]:= n + Floor[n*r/t] + Floor[n*s/t];
Table[f[n], {n, 1, 120}] (* A189469 *)
Table[g[n], {n, 1, 120}] (* A189470 *)
Table[h[n], {n, 1, 120}] (* A189471 *)
PROG
(PARI) for(n=1, 100, print1(n + floor(n*(1+sqrt(2))) + floor(n*(1+sqrt(3))), ", ")) \\ G. C. Greubel, Apr 13 2018
(Magma) [n + Floor(n*(1+Sqrt(2))) + Floor(n*(1+Sqrt(3))): n in [1..100]]; // G. C. Greubel, Apr 13 2018
CROSSREFS
Sequence in context: A314265 A189520 A189406 * A314266 A314267 A314268
KEYWORD
nonn
AUTHOR
Clark Kimberling, Apr 22 2011
STATUS
approved