login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189301
Zero-one sequence based on A026147: a(A026147(k))=a(k); a(A181155(k))=1-a(k), a(1)=0.
3
0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1
OFFSET
1
COMMENTS
First, the sequences of odd and even positive integers are used to generate the Thue-Morse sequence A010060, in which the positions of 0 comprise A026147 and those of 1 comprise A181155. The procedure is then repeated starting with those two sequences, resulting in A189301.
MATHEMATICA
u[n_] := 2 n - 1; a[1] = 0; h = 400;
c = (u[#1] &) /@ Range[h]; (*A005408*)
d = (Complement[Range[Max[#1]], #1] &)[c]; (*A005843*)
Table[a[d[[n]]] = 1 - a[n], {n, 1, h - 1}]; (*Thue-Morse: A010060*)
Table[a[c[[n]]] = a[n], {n, 1, h}] (*A010060*)
c = Flatten[Position[%, 0]] (*A026147*)
d = Flatten[Position[%%, 1]] (*A181155*)
a[1] = 0; h = 200
Table[a[d[[n]]] = 1 - a[n], {n, 1, h - 1}]; (*A189301*)
Table[a[c[[n]]] = a[n], {n, 1, h}] (*A189301*)
c = Flatten[Position[%, 0]] (*A189302*)
d = Flatten[Position[%%, 1]] (*A189303*)
KEYWORD
nonn
AUTHOR
Clark Kimberling, Apr 19 2011
STATUS
approved