login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Counterexamples to Polya's conjecture that A002819(n) <= 0 if n > 1.
3

%I #35 Mar 22 2024 19:38:04

%S 906150257,906150258,906150259,906150260,906150261,906150262,

%T 906150263,906150264,906150265,906150266,906150267,906150268,

%U 906150269,906150270,906150271,906150272,906150273,906150274,906150275,906150276,906150277,906150278,906150279,906150280

%N Counterexamples to Polya's conjecture that A002819(n) <= 0 if n > 1.

%C The point is that for all x < 906150257 there are more n <= x with Omega(n) odd than with Omega(n) even. At x = 906150257 the evens go ahead for the first time. - _N. J. A. Sloane_, Feb 10 2022

%C 906150294 is the smallest number > 906150257 that is not in the sequence (see A028488).

%C See A002819, A008836, A028488, A051470 for additional comments, references, and links.

%C See Brent and van de Lune (2011) for a history of Polya's conjecture and a proof that it is true "on average" in a certain precise sense.

%D Barry Mazur and William Stein, Prime Numbers and the Riemann Hypothesis, Cambridge University Press, 2016. See p. 22.

%H Donovan Johnson, <a href="/A189229/b189229.txt">Table of n, a(n) for n = 1..10000</a>

%H R. P. Brent and J. van de Lune, <a href="http://arxiv.org/abs/1112.4911">A note on Polya's observation concerning Liouville's function</a>, arXiv:1112.4911 [math.NT] 2011.

%H Jarosław Grytczuk, <a href="https://arxiv.org/abs/2003.02887">From the 1-2-3 Conjecture to the Riemann Hypothesis</a>, arXiv:2003.02887 [math.CO], 2020. See p. 9.

%H Ben Sparks, <a href="https://www.youtube.com/watch?v=eQCUPQdi6DY">906,150,257 and the Pólya conjecture (MegaFavNumbers)</a>, SparksMath video (2020).

%H M. Tanaka, <a href="https://doi.org/10.3836/tjm/1270216093">A Numerical Investigation on Cumulative Sum of the Liouville Function</a>, Tokyo J. Math. 3 (1980), 187-189.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Pólya_conjecture">Pólya conjecture</a>.

%F { k : (k-1)*A002819(k) > 0. }

%e 906150257 is the smallest number k > 1 with A002819(k) > 0 (see Tanaka 1980).

%o (PARI) s=1; c=0; for(n=2, 906188859, s=s+(-1)^bigomega(n); if(s>0, c++; write("b189229.txt", c " " n))) /* _Donovan Johnson_, Apr 25 2013 */

%Y Cf. A002819 (Liouville's summatory function L(n)), A008836 (Liouville's function lambda(n)), A028488 (n such that L(n) = 0), A051470 (least m for which L(m) = n).

%K nonn

%O 1,1

%A _Jonathan Sondow_, Jun 13 2011