login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188935
Decimal expansion of (1+sqrt(37))/6.
2
1, 1, 8, 0, 4, 6, 0, 4, 2, 1, 7, 1, 6, 3, 6, 9, 9, 4, 8, 1, 6, 6, 6, 1, 4, 0, 4, 0, 8, 6, 7, 0, 1, 1, 1, 7, 7, 0, 1, 4, 1, 6, 1, 6, 8, 2, 4, 6, 4, 4, 0, 1, 8, 6, 4, 4, 0, 3, 1, 9, 2, 1, 7, 4, 4, 1, 4, 3, 8, 8, 7, 8, 7, 5, 5, 3, 1, 5, 1, 7, 0, 6, 6, 3, 3, 8, 4, 4, 4, 0, 4, 6, 5, 9, 6, 4, 1, 4, 4, 3, 9, 0, 5, 1, 5, 5, 8, 5, 0, 1, 5, 0, 8, 5, 5, 1, 9, 3, 9, 5, 5, 5, 8, 9, 6, 7, 7, 1, 7, 9
OFFSET
1,3
COMMENTS
Decimal expansion of the length/width ratio of a (1/3)-extension rectangle. See A188640 for definitions of shape and r-extension rectangle.
A (1/3)-extension rectangle matches the continued fraction [1,5,1,1,5,1,1,5,1,1,5,...] for the shape L/W=(1+sqrt(37))/6. This is analogous to the matching of a golden rectangle to the continued fraction [1,1,1,1,1,1,1,1,...]. Specifically, for the (1/3)-extension rectangle, 1 square is removed first, then 5 squares, then 1 square, then 1 square,..., so that the original rectangle of shape (1+sqrt(37))/6 is partitioned into an infinite collection of squares.
FORMULA
Equals exp(arcsinh(1/6)). - Amiram Eldar, Jul 04 2023
EXAMPLE
1.1804604217163699481666140408670111770141616824644...
MATHEMATICA
RealDigits[(1 + Sqrt[37])/6, 10, 111][[1]] (* Robert G. Wilson v, Aug 18 2011 *)
CROSSREFS
Sequence in context: A200482 A073824 A242673 * A155528 A096152 A021558
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Apr 13 2011
STATUS
approved