login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that the maximum exponent in its prime factorization does not equal the number of positive exponents (A051903(k) <> A001221(k)).
7

%I #21 Sep 08 2024 13:47:10

%S 4,6,8,9,10,14,15,16,21,22,24,25,26,27,30,32,33,34,35,38,39,40,42,46,

%T 48,49,51,54,55,56,57,58,60,62,64,65,66,69,70,72,74,77,78,80,81,82,84,

%U 85,86,87,88,90,91,93,94,95,96,102,104,105,106,108,110,111

%N Numbers k such that the maximum exponent in its prime factorization does not equal the number of positive exponents (A051903(k) <> A001221(k)).

%H Reinhard Zumkeller, <a href="/A188654/b188654.txt">Table of n, a(n) for n = 1..10000</a>

%F A051903(n) <> A001221(n);

%F A225230(a(n)) <> 0.

%t q[n_] := Module[{e = FactorInteger[n][[;;, 2]]}, Max[e] != Length[e]]; q[1] = False; Select[Range[120], q] (* _Amiram Eldar_, Sep 08 2024 *)

%o (Haskell)

%o import Data.List (findIndices)

%o a188654 n = a188654_list !! (n-1)

%o a188654_list = map (+ 1) $ findIndices (/= 0) a225230_list

%o (PARI) is(k) = {my(e = factor(k)[, 2]); #e && vecmax(e) != #e;} \\ _Amiram Eldar_, Sep 08 2024

%Y Cf. A001221, A212166 (complement), A225230.

%Y Union of A212164 and A212168.

%K nonn,easy

%O 1,1

%A _Reinhard Zumkeller_, May 03 2013