Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Jul 08 2023 18:43:25
%S 1,1,-3,7,-11,17,-23,31,-39,49,-59,71,-83,97,-111,127,-143,161,-179,
%T 199,-219,241,-263,287,-311,337,-363,391,-419,449,-479,511,-543,577,
%U -611,647,-683,721,-759,799,-839,881,-923,967,-1011,1057,-1103,1151,-1199,1249,-1299,1351,-1403,1457,-1511,1567,-1623,1681,-1739,1799,-1859,1921,-1983,2047,-2111,2177,-2243,2311,-2379,2449,-2519,2591,-2663,2737,-2811
%N Second differences of A000463; first differences of A188652.
%H Reinhard Zumkeller, <a href="/A188653/b188653.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (-2,0,2,1).
%F a(2*n) = a(2*n-1)+4*n^2-2*n-2, a(2*n+1) = -a(2*n)-2*n.
%F a(2*n) = A056220(n), a(2*n-1) = -A142463(n).
%F Abs(a(n)) = A047838(n) for n > 1.
%F a(n) = A188652(n+1)-A188652(n) = A000463(n+2)-2*A000463(n+1)+A000463(n).
%F G.f.: x*(-1-3*x+x^2+x^3) / ((x-1)*(1+x)^3). - _R. J. Mathar_, Apr 14 2011
%F a(n) = a(-n) = ((2*n^2-5)*(-1)^n+1)/4. - _Bruno Berselli_, Sep 14 2011
%F E.g.f.: 1 + ((x^2 - x - 2)*cosh(x) - (x^2 - x - 3)*sinh(x))/2. - _Stefano Spezia_, Jul 08 2023
%t LinearRecurrence[{-2, 0, 2, 1}, {1, 1, -3, 7}, 75] (* _Jean-François Alcover_, Dec 16 2021 *)
%o (Haskell)
%o a188653 n = a188653_list !! (n-1)
%o a188653_list = zipWith (-) (tail a188652_list) a188652_list
%Y Cf. A056220, A142463, A047838.
%Y Cf. A000463, A188652.
%K sign,easy
%O 1,3
%A _Reinhard Zumkeller_, Apr 13 2011