%I #18 Jun 02 2022 06:08:40
%S 1,2,2,4,6,12,23,46,90,174,330,616,1133,2058,3698,6584,11630,20404,
%T 35587,61750,106666,183522,314642,537744,916441,1557842,2642018,
%U 4471276,7552470,12734364,21436655,36031486,60478458,101380758,169740378,283873144,474246725
%N Row sums of triangle A156070.
%H Nathaniel Johnston, <a href="/A188538/b188538.txt">Table of n, a(n) for n = 0..301</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (4,-4,-2,4,0,-1).
%F G.f.: -(2*x^4-6*x^3+2*x^2+2*x-1) / ((x-1)^2*(x^2+x-1)^2). - _Colin Barker_, Jul 11 2015
%F a(n) = n+3 +A264147(n+1) -A000032(n+1). - _R. J. Mathar_, Jun 02 2022
%p with(combinat):A188538:=proc(n) local m,s;s:=1:for m from 1 to n do s:=s+1+fibonacci(n)-fibonacci(m)-fibonacci(n-m):od;return s;end: # _Nathaniel Johnston_, Apr 03 2011
%o (PARI) Vec(-(2*x^4-6*x^3+2*x^2+2*x-1)/((x-1)^2*(x^2+x-1)^2) + O(x^50)) \\ _Colin Barker_, Jul 11 2015
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_, Apr 03 2011
%E Terms after a(10) from _Nathaniel Johnston_, Apr 03 2011