login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A188395 a(n) = [n*r +k*r]-[n*r]-[k*r], where r=1/sqrt(2), k=4, [ ]=floor. 3
1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1

COMMENTS

See A187950.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = [n*r+4*r]-[n*r]-[4*r], where r=1/sqrt(2).

MATHEMATICA

r=2^(-1/2); k=4;

t=Table[Floor[n*r+k*r]-Floor[n*r]-Floor[k*r], {n, 1, 220}] (* A188395 *)

Flatten[Position[t, 0] ] (* A188396 *)

Flatten[Position[t, 1] ] (* A188397 *)

PROG

(PARI) for(n=1, 100, print1(floor((n+4)/sqrt(2)) - floor(n/sqrt(2)) - floor(4/sqrt(2)), ", ")) \\ G. C. Greubel, Apr 25 2018

(Magma) [Floor((n+4)/Sqrt(2)) - Floor(n/Sqrt(2)) - Floor(4/Sqrt(2)): n in [1..100]]; // G. C. Greubel, Apr 25 2018

CROSSREFS

Cf. A187950.

Sequence in context: A070178 A289748 A127254 * A266678 A267936 A263013

Adjacent sequences: A188392 A188393 A188394 * A188396 A188397 A188398

KEYWORD

nonn

AUTHOR

Clark Kimberling, Mar 30 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 11:21 EST 2022. Contains 358700 sequences. (Running on oeis4.)